Skip to main content

Advertisement

Log in

Possible effects of galactic cosmic ray flux and low-cloud amounts on global surface temperature

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The solar variations, solar–climate interactions, and the mechanisms controlling the response of Earth’s climate system are important to understand the effect of solar variability on climate change. The solar magnetic field is directly/indirectly disturbing the interplanetary space, the ionosphere, the magnetosphere, and even the atmosphere. To investigate the contribution of varying galactic cosmic flux, the role of sunspot number (Rz), galactic cosmic ray (GCR) rates, cloud condensation nuclei (CCN), total solar irradiance (TSI), \(\hbox {CO}_{{2}}\) concentration and the global surface temperature (GST) is examined. The variations of TSI can partially explain the global increase in temperature, and it accounts for about \(0.5^{\circ }\hbox {C}\) warming experienced from 1950 to 2016. Therefore, the future predictions of global warming should take into account the effects due to long-term changes in the galactic CRs, the low-level cloud condensation (LLC), etc. The concentrations of \(\hbox {CO}_{{2}}\) increased in the upper atmosphere by 19% during the last 65 years. A strong correlation between LLC and GST suggests a linear relationship between these parameters. These observations are suggestive of the possible role of GCRs in global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A Kilcik, J. Atmos. Sol. Terr. Phys. 67, 1573 (2005)

    Article  ADS  Google Scholar 

  2. M A El-Borie, E Shafik, A A Abdel-Halim and S Y El-Monier, J. Environ. Prot. (Irvine, Calif.) 01, 111 (2010)

  3. A Kilcik, A Özgüç and J P Rozelot, J. Atmos. Sol. Terr. Phys. 72, 1379 (2010)

    Article  ADS  Google Scholar 

  4. M A El-Borie, A A Abdel-Halim, E Shafik and S Y El-Monier, IJRRAS 6, 296 (2011)

    Google Scholar 

  5. M A El-Borie, A A Thabet, E S El-Mallah, M Abd El-Zaher and A A Bishara, Indian J. Phys. (2019), https://doi.org/10.1007/s12648-019-01502-x

  6. J-L L Le Mouël, V Courtillot, E Blanter and M Shnirman, C. R. Geosci. 340, 421 (2008)

    Article  Google Scholar 

  7. V Kossobokov, J L Le Mouël and V Courtillot, J. Atmos. Sol. Terr. Phys. 72, 595 (2010)

    Article  ADS  Google Scholar 

  8. S Bossay, S Bekki, M Marchand, V Poulain and R Toumi, J. Atmos. Sol. Terr. Phys. 130–131, 96 (2015)

    Article  ADS  Google Scholar 

  9. G C Hegerl, T J Crowley, M Allen, W T Hyde, H N Pollack, J Smerdon and E Zorita, J. Clim. 20, 650 (2007)

    Article  ADS  Google Scholar 

  10. G Hegerl, J Luterbacher, F González-Rouco, S F B Tett, T Crowley and E Xoplaki, Nat. Geosci. 4, 99 (2011)

    Article  ADS  Google Scholar 

  11. M Lockwood and C Fröhlich, Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 2447 (2007)

    ADS  Google Scholar 

  12. J L Lean and D H Rind, Geophys. Res. Lett. 35, 1 (2008)

    Article  Google Scholar 

  13. A L Morozova and T V Barlyaeva, J. Atmos. Sol. Terr. Phys. 149, 240 (2016)

    Article  ADS  Google Scholar 

  14. K Rama Gopal, G Balakrishnaiah, S M Arafath, K Raja Obul Reddy, N Siva Kumar Reddy, S Pavan Kumari, K Raghavendra Kumar, T Chakradhar Rao, T Lokeswara Reddy, R R Reddy, S Nazeer Hussain, M Vasudeva Reddy, S Suresh Babu and P Mallikarjuna Reddy, Atmos. Res. 183, 84 (2017)

  15. L J Gray, J Beer, M Geller, J D Haigh, M Lockwood, K Matthes, U Cubasch, D Fleitmann, G Harrison, L Hood, J Luterbacher, G Meehl, D Shindell, B van Geel and W White, Rev. Geophys. 48, RG4001 (2010)

  16. Y P Singh and Badruddin, Planet. Space Sci. 138, 1 (2017)

    Article  ADS  Google Scholar 

  17. P R Singh, C M Tiwari and A K Saxena, Int. J. Astron. Astrophys. 6, 8 (2016)

    Article  Google Scholar 

  18. J Haigh, Grantham Brief. Pap. 1 (2011), http://www.imperial.ac.uk/people/j.haigh/

  19. T Sukhodolov, E Rozanov, W T Ball, T Peter and W Schmutz, J. Atmos. Sol. Terr. Phys. 152–153, 50 (2017)

    Article  ADS  Google Scholar 

  20. IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S Solomon, D Qin and M Manning (Cambridge, United Kingdom and New York, USA) (2007)

  21. M A El-Borie and S S Al-Thoyaib, Int. J. Phys. Sci. 1, 67 (2006)

    Google Scholar 

  22. D Valev, Phys. Chem. Earth 31, 109 (2006)

    Article  ADS  Google Scholar 

  23. M P Souza Echer, E Echer, D J Nordemann, N R Rigozo and A Prestes, Clim. Change 87, 489 (2008)

    Article  ADS  Google Scholar 

  24. K G McCracken and J Beer, J. Geophys. Res. Sp. Phys. 112, 1 (2007)

    Google Scholar 

  25. J Lean, Geophys. Res. Lett. 27, 2425 (2000)

    Article  ADS  Google Scholar 

  26. H Svensmark and E Friis-Christensen, J. Atmos. Sol. Terr. Phys. 59, 1225 (1997)

    Article  ADS  Google Scholar 

  27. P K Sen, J. Am. Stat. Assoc. 63, 1379 (1968)

    Article  Google Scholar 

  28. L K Jian, C T Russell and J G Luhmann, Sol. Phys. 274, 321 (2011)

    Article  ADS  Google Scholar 

  29. J R Jokipii, Variations of the cosmic-ray flux with time edited by C P Sonett, H S Giampapa and M S Mathews (Arizona, 1991) p. 205

  30. M S Potgieter, Living Rev. Sol. Phys. 10, 3 (2013)

    Article  ADS  Google Scholar 

  31. K G McCracken, J. Geophys. Res. Sp. Phys. 112, 1 (2007)

    Google Scholar 

  32. U R Rao, Curr. Sci. 100, 223 (2011)

    Google Scholar 

  33. M A El-Borie, A A Abdel-Halim and S Y El-Monier, Int. J. Astron. Astrophys. 06, 14 (2016)

    Article  Google Scholar 

  34. M A El-Borie, M Abd El-Zaher and A Al Shenawy, Am. J. Environ. Eng. 2, 80 (2012)

    Article  Google Scholar 

  35. A G Elias, Proc. Int. Astron. Union 5, 336 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the assistance of Dr K G McCracken for providing us with precious data and permission to reproduce figure 1 shown in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Abd El-Zaher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Borie, M.A., Thabet, A.A., El-Mallah, E.S. et al. Possible effects of galactic cosmic ray flux and low-cloud amounts on global surface temperature. Pramana - J Phys 94, 45 (2020). https://doi.org/10.1007/s12043-019-1912-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1912-2

Keywords

PACS Nos

Navigation