Skip to main content
Log in

A geometric look at the objective gravitational wave function reduction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

There is a famous criterion for objective wave function reduction which is derived by using the Shrödinger–Newton equation [L Diosi, Phys. Lett. A 105(4–5), 199 (1984)]. In this regard, a critical mass for the transition from quantum world to the classical world is determined for a particle or an object. In this paper, we shall derive that criterion by using the concept of Bohmian trajectories. This study has two consequences. The first is, it provides a geometric framework for the problem of wave function reduction. The second is, it represents the role of quantum and gravitational forces in the reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L Diosi, Phys. Lett. A 105(4–5), 199 (1984)

  2. F Karolyhazy, Nuovo Cimento A 42, 390 (1966)

    Article  ADS  Google Scholar 

  3. L Diosi, Phys. Lett. A 120(8), 377 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. L Diosi, Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  5. A Bassi, K Lochan, S Satin, T P Singh and H Ulbricht, Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  6. R Penrose, Gen. Relativ. Gravit. 28(5), 581 (1996)

  7. R Penrose, J. Phys.: Conf. Ser. 174012001 (2009)

  8. R Penrose, Found. Phys. 44, 557 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. P R Holland, The quantum theory of motion (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  10. J J Sakurai and J Napolitano, Modern quantum mechanics (Cambridge University Press, 2017)

  11. K Landsman, The measurement problem, in: Foundations of quantum theory. Fundamental theories of physics (Springer, Cham, 2017) Vol. 188

  12. J Von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press, 1996)

  13. J A Wheeler and W H Zurek, Quantum theory and measurement (Princeton University Press, 1983)

  14. F J Belinfante, A survey of hidden-variables theories (Elsevier Science and Technology, 1973)

  15. G C Ghirardi, A Rimini and T Weber, Quantum probability and applications II (1984) pp. 223–232

  16. G C Ghirardi, A Rimini and T Weber, Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. V Allori, S Goldstein, R Tumulka and N Zanghi, On the common structure of Bohmian mechanics and the GhirardiRiminiWeber theory, arXiv:quant-ph/0603027

  18. N Gisin, Phys. Lett. A 143(1–2) 1 (1990)

  19. R W Carrol, Fluctuations, information, gravity and the quantum potential (Springer, Netherlands, 2006)

    Book  Google Scholar 

  20. F Shojai and M Golshani, Int. J. Mod. Phys. A 13(4), 677 (1998)

    Article  ADS  Google Scholar 

  21. I Licata and D Fiscaletti, Quantum potential: Physics, geometry and algebra (Springer International Publishing, 2014)

  22. F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 86(4), 747 (2016)

    Article  ADS  Google Scholar 

  23. Bryce Seligman Dewitt and Neill Graham, The many worlds interpretation of quantum mechanics (Princeton Series in Physics, 2015)

  24. Max Tegmark, Fortsch. Phys. 46, 855 (1998)

    Article  MathSciNet  Google Scholar 

  25. H Everett, Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  26. J A Wheeler, Rev. Mod. Phys. 29, 463 (1973)

    Article  ADS  Google Scholar 

  27. David Wallace, The emergent multiverse: Quantum theory according to the Everett interpretation (Oxford University Press, 2014), ISBN 978-0-19-954696-1

  28. D Bohm, Phys. Rev. 85(2), 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  29. D Bohm, Wholeness and the implicate order (Routledge & Kegan Paul, 1980)

  30. D Bohm and B J Hiley, The undivided universe: An ontological interpretation of quantum theory (Routledge, 1993)

  31. The Bohmian quantum potential for the relativistic electron has been derived recently by Hiley and co-workers through complicated methods of Clifford algebra \(C^{0}_{3}\,[33]\). There, the quantum potential is considered as additional term in the Hamilton–Jacobi equation of the electron and is obtained by comparing with the original equation \(p_\mu p^\mu =m^2\). In other words, in that case too the relation \(p_\mu p^\mu ={\cal{M}}^2\) holds, where \(\cal{M}^2=m^2+Q_{\text{Dirac}}\)

  32. The polar form substitution of the wave function into the Klein–Gordon equation is not the only way to get the Hamilton–Jacobi equation (11)

  33. B J Hiley and R E Callaghan, Found. Phys. 42, 192 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. F Rahmani and M Golshani, Int. J. Theor. Phys. 56, 3096 (2017)

    Article  Google Scholar 

  35. F Rahmani, M Golshani and Gh Jafari, Int. J. Mod. Phys. A 33(22) (2018), https://doi.org/10.1142/S0217751X18501294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Golshani, M. & Jafari, G. A geometric look at the objective gravitational wave function reduction. Pramana - J Phys 94, 163 (2020). https://doi.org/10.1007/s12043-020-02032-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02032-6

Keywords

PACS Nos

Navigation