Skip to main content
Log in

Modelling of semiconductor laser with double external cavities for use in ultrahigh speed photonics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We model and investigate the dynamics and modulation performance of semiconductor laser integrated with two short external cavities facing the front and back facets with the aim to enhance the modulation bandwidth of the laser for use in high-speed photonics. The coupled cavities provide double optical feedback (DOFB) to the laser cavity through the partially reflecting facets of the laser cavity. The study is based on modifying the rate equations of the laser to include multiple reflections of laser radiations in the external cavities. Therefore, it accounts for the regime of strong OFB that causes bandwidth enhancement. We introduce correspondence between the laser stability under DOFB and the modulation response characteristics. Also, we allocate the ranges of the DOFB that induce photon–photon resonance (PPR) effect as the main contributor to the bandwidth enhancement. We show that the intensity modulation (IM) response can be tailored by varying the reflectivity of the external mirrors when the external cavities are too short to stabilise the laser output. Modulation bandwidth better than 55 GHz is predicted under strong double OFB when the external cavities are as short as 2 mm. Stronger DOFB is found to enhance the PPR effect and induce resonant modulation over a narrow frequency range around frequencies reaching 45 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X S Qiu, Z M Tuo and Z Yan, Millimeter wave technology in wireless PAN, LAN and MAN (Taylor & Francis Group, Boca Raton, 2008)

    Google Scholar 

  2. C Cole, Technol. Digest Optoeletron. Comm. Conf. 108 (2010)

  3. M Sharif, J K Perin and J M Kahn, J. Lightwave Technol. 33(20), 4268 (2015)

    Article  ADS  Google Scholar 

  4. S Imai et al, Proc. SPIE 7952, 795204 (2011)

    Article  Google Scholar 

  5. G P Agrawal and N K Dutta, Semiconductor lasers (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  6. L A Coldren, S W Corzine and M L Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, Inc., 1995)

  7. J Wang, M K Haldar, L Li and F V C Mendis, IEEE Photon. Technol. Lett. 8(1), 34 (1996)

    Article  Google Scholar 

  8. H Ishihara, Y Saito, W Kobayashi and H Yasaka, IEICE Trans. Electron. E95-C(9), 1549 (2012)

  9. S Mieda, S Shiratori, N Yokota, W Kobayashi and H Yasaka, Appl. Phys. Express 8, 082701 (2015)

    Article  ADS  Google Scholar 

  10. H Dalir, M Ahmed, A Bakry and F Koyama, Appl. Phys. Lett. 105(8), 081113 (2014)

    Article  ADS  Google Scholar 

  11. P Bardella, W Chow and I Montrosset, Photonics 3(1), 4 (2016)

    Article  Google Scholar 

  12. M Ahmed, A Bakry, R Altuwirqi, M S Alghamdi and F Koyama, Jpn. J. Appl. Phys. 53(128), 124103 (2013)

    Article  ADS  Google Scholar 

  13. M Ahmed, A Bakry, R Altuwirqi, M S Alghamdi and F Koyama, J. Electro-opt. Soc. Rap. Publ. 8, 13064 (2013)

    Article  Google Scholar 

  14. M Ahmed, A Bakry, M S Alghamdi, H Dalir and F Koyama, Opt. Express 23, 15365 (2015)

    Article  ADS  Google Scholar 

  15. M Ahmed, H Dalir and R Chen, Optical devices with transverse-coupled cavity, patent US010658815B1, USA Patent and Trademark Office (2020)

  16. M S Alghamdi, H Dalir, A Bakry, R T Chen and M Ahmed, Jpn. J. Appl. Phys. 58(11), 112003 (2019)

    Article  ADS  Google Scholar 

  17. H Dalir, A Matsutani, M Ahmed, A Bakry and F Koyama, IEEE Photon. Technol. Lett. 26(3), 281 (2014)

    Article  Google Scholar 

  18. H Dalir and F Koyama, Appl. Phys. Express 7, 022102 (2014)

    Article  ADS  Google Scholar 

  19. A Murakami and J Ohtsubo, IEEE J. Quantum Electron. 34(10), 1979 (1998)

    Article  ADS  Google Scholar 

  20. B Tromborg, J H Osmundsen and H Olesen, IEEE J. Quantum Electron. 20(9), 1023 (1984)

    Article  ADS  Google Scholar 

  21. R W Tkach and A R Chraplyvy, J. Lightwave Technol. 4(11), 1655 (1986)

    Article  ADS  Google Scholar 

  22. M Yamada, Theory of semiconductor lasers (Springer, Tokyo, 2014)

    Book  Google Scholar 

  23. G Duan and G Debarge, Opt. Lett. 12(10), 800 (1987)

    Article  ADS  Google Scholar 

  24. S Abdulrhmann, M Ahmed, T Okamoto and M Yamada, IEEE J. Sel. Top. Quantum Electron. 9(5), 1265 (2003)

  25. K Sato, S H Kuwahara and Y Miyamoto, J. Lightwave Technol. 23(11), 3790 (2005)

    Article  ADS  Google Scholar 

  26. J Ohtsubo, Semiconductor lasers: Stability, instability and chaos (Springer-Verlag, Berlin, 2013) 3rd Edn

  27. J S Cohen, R R Dentine and B H Verbeek, IEEE J. Quantum Electron. 24(10), 1989 (1988)

    Article  ADS  Google Scholar 

  28. A M Levine, G H M van Tartwijk, D Lenstra and T Erneux, Phys. Rev. A 52, R3436 (1995)

    Article  ADS  Google Scholar 

  29. J Helms and K Petermann, IEEE J. Quantum Electron. 26(5), 833 (1990)

    Article  ADS  Google Scholar 

  30. Y H Kao, N M Wang and H M Chen, IEEE J. Quantum Electron. 30(8), 1732 (1994)

    Article  ADS  Google Scholar 

  31. M Ahmed, M Yamada and S Abdulrhmann, Int. J. Numer. Model. 22(6), 434 (2009)

    Article  Google Scholar 

  32. M Ahmed, Int. J. Num. Model. 17(2), 147 (2004)

    Article  Google Scholar 

  33. A Bakry, Sci. World J. 2014, 728458 (2014)

    Article  Google Scholar 

  34. V Pal, J Suelzer, A Prasad, G Vemuri and R Ghosh, IEEE J. Quantum Electron. 49(3), 340 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G: 56-130-1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustafa Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Bakry, A. Modelling of semiconductor laser with double external cavities for use in ultrahigh speed photonics. Pramana - J Phys 95, 88 (2021). https://doi.org/10.1007/s12043-021-02115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02115-y

Keywords

PACS Nos

Navigation