Skip to main content
Log in

Protumoral bone marrow-derived cells migrate via Gβγ-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs

  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Reciprocal communication among cells of the tumor microenvironment contributes to cancer progression. Here, we show that a protumoral population of cultured bone marrow-derived cells (BMDC) containing Tie2+/CD45+/CD11b + cells responded to lung carcinoma cells and reciprocally stimulated them. These cells migrated via heterotrimeric G protein-dependent signaling pathways and strongly activated the PI3K/AKT, ERK and mTOR signaling cascades in response to conditioned media and chemotactic agonists. To get insight into the molecular machinery involved in BMDC migration, we revealed their repertoire of guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) and G proteins in comparison with fresh bone marrow cells, proven that these cell populations had contrasting effects on tumor growth. BMDC exhibited a higher expression of G protein regulated RhoGEFs including P-Rex1, PDZ-RhoGEF, LARG, Trio and some less well characterized RhoGEFs such as ARHGEF5, ARHGEF17 and PLEKHG6. G proteins such as Gα12/13, Gαq, and the small GTPase RhoJ were also highly expressed in BMDC. Our results indicate that Tie2+/CD45+/CD11b + BMDC express a unique variety of chemotactic transducers and effectors potentially linked to their protumoral effect, warranting further studies to their characterization as molecular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VEGF:

Vascular Endothelial Growth Factor

SDF-1:

Stromal Cell-Derived Factor 1

S1P1R:

Sphingosine-1-Phosphate Receptors

S1P:

Sphingosine-1-phosphate

IL-8:

Interleukin-8

RhoGEFs:

Rho guanine exchange factors

P-Rex1:

Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein

PH:

Pleckstrin homology domain

PAE:

Porcine Aortic Endothelial

mTOR:

mammalian target of rapamycin

LPA:

Lysophosphatidic acid

LLC:

Lewis lung carcinoma

HGF:

Hepatocyte Growth Factor

EPC:

Endothelial Progenitor Cell

EGF:

Epidermal Growth Factor

FGF:

Fibroblast Growth Factor

DH:

Dbl-Homology domain

BMDC:

Bone Marrow-Derived Cells

BM:

Bone Marrow

References

  • Adame-Garcia SR, Cervantes-Villagrana RD, Orduna-Castillo LB, Del Rio JC, Gutkind JS, Reyes-Cruz G, Taylor SS, Vazquez-Prado J (2018) cAMP-dependent activation of the Rac guanine exchange factor P-REX1 by type I protein kinase a (PKA) regulatory subunits. J Biol Chem:jbc.RA118.006691. https://doi.org/10.1074/jbc.RA118.006691

  • Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, Bentires-Alj M (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515(7525):130–133

    Article  CAS  PubMed  Google Scholar 

  • Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T (2004) PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 104(8):2299–2306

    Article  CAS  PubMed  Google Scholar 

  • Carretero-Ortega J, Walsh CT, Hernandez-Garcia R, Reyes-Cruz G, Brown JH, Vazquez-Prado J (2010) Phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis. Mol Pharmacol 77(3):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes-Villagrana RD, Adame-Garcia SR, Garcia-Jimenez I, Color-Aparicio VM, Beltran-Navarro YM, Konig GM, Kostenis E, Reyes-Cruz G, Gutkind JS, Vazquez-Prado J (2018) Gbetagamma signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Galphaq and Galpha13 proteins. J Biol Chem:jbc.RA118.006254. https://doi.org/10.1074/jbc.RA118.006254

  • Chavez-Vargas L, Adame-Garcia SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JG, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vazquez-Prado J (2016) Protein kinase a (PKA) type I interacts with P-Rex1, a Rac guanine nucleotide exchange factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 291(12):6182–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang JJ, Rafii S, Huang XY (2009) Suppression of tumor angiogenesis by Galpha(13) haploinsufficiency. J Biol Chem 284(40):27409–27415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC (2018) Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 9(1):771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nurnberg B, Williams RL, Backer JM (2012) G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci Signal 5(253):ra89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR, Labrecque J, Lau G, Mosi RM, Nelson KL, Qin L, Santucci Z, Wong RS (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72(5):588–596

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 274(9):5868–5879

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Chikumi H, Gutkind JS (2000) Leukemia-associated rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to rho. FEBS Lett 485(2–3):183–188

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Chikumi H, Gutkind JS (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20(13):1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319(5860):195–198

    Article  CAS  PubMed  Google Scholar 

  • Giannoni E, Taddei ML, Parri M, Bianchini F, Santosuosso M, Grifantini R, Fibbi G, Mazzanti B, Calorini L, Chiarugi P (2013) EphA2-mediated mesenchymal-amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. J Mol Med 91(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Hernandez ML, Vazquez-Macias A, Carretero-Ortega J, Hernandez-Garcia R, Garcia-Regalado A, Hernandez-Negrete I, Reyes-Cruz G, Gutkind JS, Vazquez-Prado J (2009) Differential inhibitor of Gbetagamma signaling to AKT and ERK derived from phosducin-like protein: effect on sphingosine 1-phosphate-induced endothelial cell migration and in vitro angiogenesis. J Biol Chem 284(27):18334–18346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280(5372):2112–2114

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia R, Iruela-Arispe ML, Reyes-Cruz G, Vazquez-Prado J (2015) Endothelial RhoGEFs: a systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells. Vasc Pharmacol 74:60–72

    Article  CAS  Google Scholar 

  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Duda DG, Jain RK, Fukumura D (2008) Histopathologic findings and establishment of novel tumor lines from spontaneous tumors in FVB/N mice. Comp Med 58(3):253–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahangiri B, Khalaj-Kondori M, Asadollahi E and Sadeghizadeh M (2018) Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J Cell Commun Signal

  • Kaur S, Elkahloun AG, Singh SP, Arakelyan A, Roberts DD (2018) A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells. J Cell Commun Signal 12(1):157–170

    Article  PubMed  Google Scholar 

  • Kazerounian S, Lawler J (2018) Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal 12(1):171–179

    Article  PubMed  Google Scholar 

  • Kim C, Yang H, Fukushima Y, Saw PE, Lee J, Park JS, Park I, Jung J, Kataoka H, Lee D, Heo WD, Kim I, Jon S, Adams RH, Nishikawa S, Uemura A, Koh GY (2014) Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell 25(1):102–117

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson CD, Ridley AJ (2018) Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol 217(2):447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann DM, Seneviratne AM, Smrcka AV (2008) Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol 73(2):410–418

    Article  CAS  PubMed  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Madlambayan GJ, Butler JM, Hosaka K, Jorgensen M, Fu D, Guthrie SM, Shenoy AK, Brank A, Russell KJ, Otero J, Siemann DW, Scott EW, Cogle CR (2009) Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 114(19):4310–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neptune ER, Bourne HR (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A 94(26):14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neptune ER, Iiri T, Bourne HR (1999) Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem 274(5):2824–2828

    Article  CAS  PubMed  Google Scholar 

  • Ohle SJ, Anandaiah A, Fabian AJ, Fine A, Kotton DN (2012) Maintenance and repair of the lung endothelium does not involve contributions from marrow-derived endothelial precursor cells. Am J Respir Cell Mol Biol 47(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  CAS  PubMed  Google Scholar 

  • Ridge SM, Bhattacharyya D, Dervan E, Naicker SD, Burke AJ, Murphy JM, O'Leary K, Greene J, Ryan AE, Sullivan FJ, Glynn SA (2018) Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a pro-tumourigenic 'activated' state that enhances prostate cancer cell migration. Int J Cancer 142(10):2056–2067

    Article  CAS  PubMed  Google Scholar 

  • Runne C, Chen S (2013) PLEKHG2 promotes heterotrimeric G protein betagamma-stimulated lymphocyte migration via Rac and Cdc42 activation and actin polymerization. Mol Cell Biol 33(21):4294–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppel KM, Willison D, Kataoka H, Wang A, Zheng YW, Cornelissen I, Yin L, Xu SM, Coughlin SR (2005) Essential role for Galpha13 in endothelial cells during embryonic development. Proc Natl Acad Sci U S A 102(23):8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi H, Ii M, Jujo K, Yokoyama A, Hagiwara N, Asahara T (2011) Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells. PLoS One 6(12):e28639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JP, Basch R, Shamamian P (2004) Hematopoietic stem cells and endothelial cell precursors express Tie-2, CD31 and CD45. Blood Cells Mol Dis 32(1):168–175

    Article  CAS  PubMed  Google Scholar 

  • Smith HA, Kang Y (2013) The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl) 91(4):411–429

    Article  CAS  Google Scholar 

  • Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, Luo J, Benovic JL, Klein-Szanto A, Yagi H, Gutkind JS, Parsons RE, Kazanietz MG (2010) Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 40(6):877–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Nagae R, Kozawa M, Morishita R, Kimura S, Nagase T, Ohara O, Yoshida S, Asano T (2008) Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42. J Biol Chem 283(4):1946–1953

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Prado J, Bracho-Valdes I, Cervantes-Villagrana RD, Reyes-Cruz G (2016) Gbetagamma Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 90(5):573–586

    Article  CAS  PubMed  Google Scholar 

  • Vincent KM, Postovit LM (2018) Matricellular proteins in cancer: a focus on secreted frizzled-related proteins. J Cell Commun Signal 12(1):103–112

    Article  PubMed  Google Scholar 

  • Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV, Cohn L, Iwasaki A, Li L, Wu D (2009) Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 284(42):28599–28606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108(6):809–821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance provided by Estanislao Escobar-Islas, Margarita Valadez, David Pérez, and Jaime Estrada-Trejo is acknowledged. We thank Victor Hugo Rosales-García (Central Laboratories of Cinvestav) for technical assistance in cytometry; and Ricardo Gaxiola-Centeno and Benjamín Emmanuel Chavez-Álvarez (UPEAL-Cinvestav) for breeding and maintaining mice colonies. This work was supported by CONACyT (Consejo Nacional de Ciencia y Tecnología, Mexico) Grants 286274 (to J. V.-P.) and 240119 (to G. R.-C.). R.D.C.-V., and V.M.C.-A were supported by fellowships from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vázquez-Prado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes-Villagrana, R.D., Color-Aparicio, V.M., Reyes-Cruz, G. et al. Protumoral bone marrow-derived cells migrate via Gβγ-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs. J. Cell Commun. Signal. 13, 179–191 (2019). https://doi.org/10.1007/s12079-018-00502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-00502-6

Keywords

Navigation