Skip to main content

Advertisement

Log in

Predator–prey systems in streams and rivers

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Many predator–prey systems are found in environments with a predominantly unidirectional flow such as streams and rivers. Alterations of natural flow regimes (e.g., due to human management or global warming) put biological populations at risk. The aim of this paper is to devise a simple method that links flow speeds (currents) with population retention (persistence) and wash-out (extinction). We consider systems of prey and specialist, as well as generalist, predators, for which we distinguish the following flow speed scenarios: (a) coexistence, (b) persistence of prey only or (c) predators only (provided they are generalists), and (d) extinction of both populations. The method is based on a reaction–advection–diffusion model and traveling wave speed approximations. We show that this approach matches well spread rates observed in numerical simulations. The results from this paper can provide a useful tool in the assessment of instream flow needs, estimating the flow speed necessary for preserving riverine populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan JD (1995) Drift. In: Allan JD (ed) Stream ecology: structure and function of running waters. Chapman & Hall, London, pp 221–237

    Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology. Springer, Dordrecht

    Book  Google Scholar 

  • Anderson KE, Nisbet RM, Diehl S, Cooper SD (2005) Scaling population responses to spatial environmental variability in advection-dominated systemse. Ecol Lett 8:933–943

    Article  Google Scholar 

  • Anderson KE, Nisbet RM, Diehl S (2006a) Spatial scaling of consumer-resource interactions in advection-dominated systems. Am Nat 168:358–372

    Article  PubMed  Google Scholar 

  • Anderson KE, Paul AJ, McCauley E, Jackson LJ, Post JR, Nisbet RM (2006b) Instream flow needs in streams and rivers: the importance of understanding ecological dynamics. Front Ecol Environ 4:309–318

    Article  Google Scholar 

  • Anderson KE, Nisbet RM, McCauley E (2008) Transient responses to spatial perturbations in advective systems. Bull Math Biol 70:1480–1502

    Article  PubMed  Google Scholar 

  • Aronson DG, Weinberger HF (1975) Nonlinear diffusion in population genetics, combustion, and nerve propagation. In: Goldstein JA (ed) Partial differential equations and related topics. Lecture notes in mathematics, no 446. Springer, Berlin, pp 5–49

    Chapter  Google Scholar 

  • Baker EA, Coon TG (1997) Development and evaluation of alternative habitat suitability criteria for brook trout. Trans Am Fish Soc 126:65–76

    Article  Google Scholar 

  • Ballyk M, Smith H (1999) A model of microbial growth in a plug flow reactor with wall attachment. Math Biosci 158:95–126

    Article  CAS  PubMed  Google Scholar 

  • Ballyk M, Dung L, Jones DA, Smith HL (1998) Effects of random motility on microbial growth and competition in a flow reactor. SIAM J Appl Math 59:573–596

    Article  Google Scholar 

  • Brittain JE, Eikeland TJ (1988) Invertebrate drift—a review. Hydrobiologia 166:77–93

    Article  Google Scholar 

  • Byers JE, Pringle JM (2006) Going against the flow: retention, range limits and invasions in advective environments. Mar Ecol Prog Ser 313:27–41

    Article  Google Scholar 

  • Chaudhry MH (2008) Open-channel flow, 2nd edn. Springer, New York

    Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Dunbar SR (1983) Travelling wave solutions of diffusive Lotka-Volterra equations. J Math Biol 17:11–32

    Article  Google Scholar 

  • Dunbar SR (1984) Travelling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R 4. Trans Am Math Soc 286:557–594

    Google Scholar 

  • Everest FH, Chapman DW (1972) Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J Fish Res Board Can 29:91–100

    Google Scholar 

  • Fagan WF, Lewis MA, Neubert MG, van den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–158

    Article  Google Scholar 

  • Fausch KD (1984) Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Can J Zool 62:441–451

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:355–369

    Google Scholar 

  • Gaylord B, Gaines SD (2000) Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat 155:769–789

    Article  PubMed  Google Scholar 

  • Hadeler KP, Rothe F (1975) Travelling fronts in nonlinear diffusion equations. J Math Biol 2:251–263

    Article  Google Scholar 

  • Hainzl J (1988) Stability and Hopf bifurcation in a predator-prey system with several parameters. SIAM J Appl Math 48:170–190

    Article  Google Scholar 

  • Hilker FM, Lewis MA, Seno H, Langlais M, Malchow H (2005) Pathogens can slow down or reverse invasion fronts of their hosts. Biological Invasions 7:817–832

    Article  Google Scholar 

  • Hilker FM, Langlais M, Petrovskii SV, Malchow H (2007) A diffusive SI model with Allee effect and application to FIV. Math Biosci 206:61–80

    Article  PubMed  Google Scholar 

  • Holling CS (1961) Principles of insect predation. Annu Rev Entomol 6:163–182

    Article  Google Scholar 

  • Hughes NF, Dill LM (1990) Position choice by drift-feeding salmonids: model and test for Arctic grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska. Can J Fish Aquat Sci 47:2039–2048

    Article  Google Scholar 

  • Humphries S, Ruxton GD (2002) Is there really a drift paradox? J Anim Ecol 71:151–154

    Article  Google Scholar 

  • Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) Étude de l’equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d’Etat à Moscou, Série internationale, Section A 1:1–25

    Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Lancaster J, Hildrew AG (1993) Characterizing in-stream flow refugia. Can J Fish Aquat Sci 50:1663–1675

    Article  Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43:141–158

    Article  Google Scholar 

  • Lewis MA, van den Driessche P (1993) Waves of extinction from sterile insect release. Math Biosci 116:221–247

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA, Lutscher F, Hillen T (2009) Spatial dynamics in ecology. In: Lewis MA, Keener J, Maini P, Chaplain M (eds) Park City Mathematics Institute volume in Mathematical Biology, Institute for Advanced Study, Princeton

  • Li B, Weinberger HF, Lewis MA (2005) Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci 196:82–98

    Article  PubMed  Google Scholar 

  • Ludwig D, Jones DD, Holling CS (1978) Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J Anim Ecol 47:315–332

    Article  Google Scholar 

  • Luther R (1906) Räumliche Ausbreitung chemischer Reaktionen. Zeitschrift für Elektrochemie 12:596–600

    Article  CAS  Google Scholar 

  • Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. SIAM J Appl Math 65:1305–1327

    Article  Google Scholar 

  • Lutscher F, Lewis MA, McCauley E (2006) Effects of heterogeneity on spread and persistence in rivers. Bull Math Biol 68:2129–2160

    Article  PubMed  Google Scholar 

  • Lutscher F, McCauley E, Lewis MA (2007) Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor Popul Biol 71:267–277

    Article  PubMed  Google Scholar 

  • Magal C, Cosner C, Ruan S, Casas J (2008) Control of invasive hosts by generalist parasitoids. Math Med Biol 25:1–20

    Article  PubMed  Google Scholar 

  • Malchow H, Schimansky-Geier L (1985) Noise and diffusion in bistable nonequilibrium systems. In: Teubner-Texte zur Physik, no 5. Teubner-Verlag, Leipzig

    Google Scholar 

  • Malchow H, Petrovskii S, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, simulations. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Morozov A, Petrovskii S, Li BL (2006) Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J Theor Biol 238:18–35

    Article  PubMed  Google Scholar 

  • Morozov A, Ruan S, Li BL (2008) Patterns of patchy spread in multi-species reaction-diffusion models. Ecological Complexity 5(4):313–328. doi:10.1016/j.ecocom.2008.05.002

    Article  Google Scholar 

  • Müller K (1954) Investigations on the organic drift in north swedish streams. Tech. Rep. 34, Report of the Institute of Freshwater Research, Drottningholm

  • Müller K (1974) Stream drift as a chronobiological phenomenon in running water ecosystems. Ann Rev Ecolog Syst 5:309–323

    Article  Google Scholar 

  • Müller K (1982) The colonization cycle of freshwater insects. Oecologia 52:202–207

    Article  Google Scholar 

  • Murray JD (2003) Mathematical biology. II: spatial models and biomedical applications, 3rd edn. Springer, Berlin

    Google Scholar 

  • Nisbet RM, Anderson KE, McCauley E, Lewis MA (2007) Response of equilibrium states to spatial environmental heterogeneity in advective systems. Math Biosci Eng 4:1–13

    PubMed  Google Scholar 

  • Nislow KH, Folt CL, Parrish DL (1999) Favorable foraging locations for young Atlantic salmon: application to habitat and population restoration. Ecol Appl 9:1085–1099

    Article  Google Scholar 

  • Nitzan A, Ortoleva P, Ross J (1974) Nucleation in systems with multiple stationary states. Symp Faraday Soc 9:241–253

    Article  Google Scholar 

  • O’Brien WJ, Showalter JJ (1993) Effects of current velocity and suspended debris on the drift feeding of Arctic grayling. Trans Am Fish Soc 122:609–615

    Article  Google Scholar 

  • Owen MR, Lewis MA (2001) How predation can slow, stop or reverse a prey invasion. Bull Math Biol 63:655–684

    Article  CAS  PubMed  Google Scholar 

  • Pachepsky E, Lutscher F, Nisbet RM, Lewis MA (2005) Persistence, spread and the drift paradox. Theor Popul Biol 67:61–73

    Article  CAS  PubMed  Google Scholar 

  • Pascual M (1993) Diffusion-induced chaos in a spatial predator–prey system. Proc R Soc Lond, B 251:1–7

    Article  Google Scholar 

  • Petrovskii S, Morozov A, Li BL (2005a) Regimes of biological invasion in a predator-prey system with the Allee effect. Bull Math Biol 67:637–661

    Article  PubMed  Google Scholar 

  • Petrovskii SV, Malchow H (2001) Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor Popul Biol 59:157–174

    Article  CAS  PubMed  Google Scholar 

  • Petrovskii SV, Morozov AY, Venturino E (2002) Allee effect makes possible patchy invasion in a predator-prey system. Ecol Lett 5:345–352

    Article  Google Scholar 

  • Petrovskii SV, Malchow H, Li BL (2005b) An exact solution of a diffusive predator-prey system. Proc R Soc Lond A 461:1029–1053

    Article  Google Scholar 

  • Piccolo JJ, Hughes NF, Bryant MD (2007) Development of net energy intake models for drift-feeding juvenile coho salmon and steelhead. Environ Biol Fisches 83:259–267

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. BioScience 47:769–784

    Article  Google Scholar 

  • Potapov AB, Lewis MA (2004) Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull Math Biol 66:975–1008

    Article  CAS  PubMed  Google Scholar 

  • Rempel LL, Richardson JS, Healey MC (1999) Flow refugia for benthic macroinvertebrates during flooding of a large river. J North Am Benthol Soc 18:34–48

    Article  Google Scholar 

  • Richardson WB (1992) Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshw Biol 28:217–230

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Wigington R, Braun DP (1997) How much water does a river need? Freshw Biol 37:231–249

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Rothe F (1981) Convergence to pushed fronts. Rocky Mt J Math 11:617

    Article  Google Scholar 

  • Sherratt JA, Smith MJ (2008) Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models. Journal of the Royal Society Interface 5:483–505

    Article  Google Scholar 

  • Sherratt JA, Lewis MA, Fowler AC (1995) Ecological chaos in the wake of invasion. Proc Natl Acad Sci USA 92:2524–2528

    Article  CAS  PubMed  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    CAS  PubMed  Google Scholar 

  • Speirs DC, Gurney WSC (2001) Population persistence in rivers and estuaries. Ecology 82:1219–1237

    Article  Google Scholar 

  • Steele JH, Henderson EW (1981) A simple plankton model. Am Nat 117:676–691

    Article  Google Scholar 

  • Takahashi LT, Maidana NA, Ferreira WC, Pulino P, Yang HM (2005) Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Bull Math Biol 67:509–528

    Article  PubMed  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer, Sunderland

    Google Scholar 

  • Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris

    Google Scholar 

  • Walks DJ (2007) Persistence of plankton in flowing water. Can J Fish Aquat Sci 64:1693–1702

    Article  Google Scholar 

  • Wang MH, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44:150–168

    Article  PubMed  Google Scholar 

  • Wańkowski JWJ, Thorpe JE (1979) Spatial distribution and feeding in atlantic salmon, Salmo salar L. juveniles. J Fish Biol 14:239–247

    Article  Google Scholar 

  • Waters TF (1972) The drift of stream insects. Annu Rev Entomol 17:253–272

    Article  Google Scholar 

  • Winterbottom J, Orton S, Hildrew A (1997) Field experiments on the mobility of benthic invertebrates in a southern English stream. Freshw Biol 38:37–47

    Article  Google Scholar 

Download references

Acknowledgements

FMH gratefully acknowledges support from the Alberta Ingenuity Fund. MAL gratefully acknowledges support from NSERC Discovery and Canadian Aquatic Invasive Species Network grants and a Canada Research Chair. The authors thank Ed McCauley for early discussions stimulating this project and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Hilker.

Appendices

Appendix A: (Non-)dimensional models

Our starting point is a dimensional model of prey N and predators P at time t and spatial location x:

$$ \begin{array}{lll} \frac{\partial}{\partial t} N(x,t) & = & -v_N \frac{\partial}{\partial x} N(x,t) + D_N \frac{\partial^2}{\partial x^2} N(x,t)\\ && + f(N, P) N , \\ \frac{\partial}{\partial t} P(x,t) & = & -v_P \frac{\partial}{\partial x} P(x,t) + D_P \frac{\partial^2}{\partial x^2} P(x,t) \\ &&+ g(N, P) P. \end{array} $$

The downstream advection speeds experienced by the prey and predators are denoted by v N and v P , respectively. The diffusivities describing random movement are D N for the prey and D P for the predators. The growth function of the prey is given by

$$ f(N, P) = r \left(1-\frac{N}{K}\right) - a P , $$

where r is the intrinsic growth rate, K is the carrying capacity, and a is the predation rate. The growth rates of specialist and generalist predators are differently defined as follows:

A.1 Specialist predators

For specialist predators, we assume

$$ g(N, P) = e a N -m , $$

where e is the trophic conversion efficiency and m the mortality rate. Introducing the dimensionless quantities

$$ \begin{array}{llllll} \tilde{N} & = \dfrac{N}{K} ~, & \qquad \tilde{P} & = \dfrac{P}{e K} ~, & \qquad \tilde{t} & = e a K t ~, \\[12pt] \tilde{x} & = \sqrt{\dfrac{e a K}{D_N}} x ~, & \qquad v & = \dfrac{v_N}{\sqrt{e a K D_N}} ~ , & \qquad \alpha & = \dfrac{r}{e a K} ~, \\[12pt] \delta & = \dfrac{v_P}{v_N} ~, & \qquad \varepsilon & = \dfrac{D_P}{D_N} ~, & \qquad \mu & = \dfrac{m}{e a K}, \end{array} $$

we arrive at the following dimensionless system:

$$ \begin{array}{lll} \frac{\partial}{\partial \tilde{t}} \tilde{N} & = & -v \frac{\partial}{\partial \tilde{x}} \tilde{N} + \frac{\partial^2}{\partial \tilde{x}^2} \tilde{N} + \alpha \tilde{N} (1-\tilde{N}) -\tilde{N} \tilde{P}~, \\ \frac{\partial}{\partial \tilde{t}} \tilde{P} & = & -\delta v \frac{\partial}{\partial \tilde{x}} \tilde{P} + \varepsilon \frac{\partial^2}{\partial \tilde{x}^2} \tilde{P} + \tilde{N} \tilde{P} -\mu \tilde{P} ~. \end{array} $$

Dropping the tildes for notational convenience gives the dimensionless Eqs. 14.

A.2 Generalist predators

For generalist predators, we assume

$$ g(N, P) = e a N +b \left(1-\frac{P}{K_P}\right) , $$

where e again is the trophic conversion efficiency. Due to alternative food sources available, the predators grow logistically with intrinsic growth rate b and carrying capacity K P . Introducing the dimensionless quantities

$$ \beta = \frac{b}{a K_P} , \qquad \kappa = \frac{K_P}{e K}, $$

we arrive at the following dimensionless system:

$$ \begin{array}{lll} \frac{\partial}{\partial \tilde{t}} \tilde{N} & = & -v \frac{\partial}{\partial \tilde{x}} \tilde{N} + \frac{\partial^2}{\partial \tilde{x}^2} \tilde{N} + \alpha \tilde{N} (1-\tilde{N}) -\tilde{N} \tilde{P}, \\ \frac{\partial}{\partial \tilde{t}} \tilde{P} & = & -\delta v \frac{\partial}{\partial \tilde{x}} \tilde{P} + \varepsilon \frac{\partial^2}{\partial \tilde{x}^2} \tilde{P} + \tilde{N} \tilde{P} +\beta \tilde{P} (\kappa -\tilde{P}) , \end{array} $$

where the remaining quantities are defined as in the specialist predators model. Dropping the tildes for notational convenience gives the dimensionless model Eqs. 13 with Eq. 11.

Appendix B: Derivation of traveling wave speeds

Our first step is to consider traveling wave solutions to system Eqs. 12 without the unidirectional flow, i.e.,

$$ \frac{\partial}{\partial t} N(x,t) = \frac{\partial^2}{\partial x^2} N(x,t) + f(N, P) N ~, \label{eq:N-diff} $$
(17)
$$ \frac{\partial}{\partial t} P(x,t) = \varepsilon \frac{\partial^2}{\partial x^2} P(x,t) + g(N, P) P ~. \label{eq:P-diff} $$
(18)

In a second step, we will look at the full system Eqs. 12.

Traveling waves are translationally invariant solutions of the form N(z) = N(x,t) and P(z) = P(x,t) with z = x − c t. They have a fixed profile and move with constant speed c. Corresponding boundary conditions are

$$ \begin{array}{llll} N(-\infty) & = N_l ~, & \qquad N(+\infty) &= N_r , \\[12pt] P(-\infty) & = P_l ~, & \qquad P(+\infty) &= P_r . \end{array} $$

Substituting

$$ \begin{array}{llll} \dfrac{\partial}{\partial t} N(x,t)& = -c N' ~, & \qquad \dfrac{\partial^2}{\partial x^2} N(x,t) &= N'' , \\[12pt] \dfrac{\partial}{\partial t} P(x,t)& = -c P' ~, & \qquad \dfrac{\partial^2}{\partial x^2} P(x,t) &= P'' , \end{array} $$

where the primes denote differentiation with respect to z, the partial differential Eqs. 1718 can be transformed to the following system of ordinary differential equations:

$$ \begin{array}{lll} -c \, N' & = & N'' + f(N,P) N , \\ -c \, P' & = & \varepsilon P'' + g(N,P) P . \end{array} $$

Introducing the new variables O = N′ and Q = P′, we arrive at a system of four differential equations of first order:

$$ N' = O ~, \label{eq:ode-N} $$
(19)
$$ O' = -c \: O -f(N,P) N ~, \label{eq:ode-O} $$
(20)
$$ P' = Q ~, \label{eq:ode-P} $$
(21)
$$ \varepsilon Q' = -c \: Q -g(N,P) P ~. \label{eq:ode-Q} $$
(22)

Recall that we are interested in two different scenarios (cf. Fig. 1). First, the prey spread into uninhabited space. We can specify the following boundary conditions. For z → + ∞, the prey still need to invade, i.e., N r  = 0. For z → − ∞, the prey have already grown to carrying capacity, i.e., N l  = 1. Moreover, we can assume that the predators are absent, P ≡ 0. Then, system Eqs. 1922 reduces to

$$ N' = O ~, \label{eq:ode-N-only} $$
(23)
$$ O' = -c \: O -f(N,0) N ~. \label{eq:ode-O-only} $$
(24)

If f(N,0) is of logistic type as in Eq. 3, system Eqs. 2324 corresponds to the Fisher equation (Fisher 1937; Kolmogorov et al. 1937). The minimum wave speed for which traveling wave solutions exist is the one given in Eq. 8. For Fisher’s equation, the minimum wave speed corresponds to the spread rate with which a locally introduced population will spread outwards (Aronson and Weinberger 1975).

Second, we are interested in the spread of predators. They propagate into an area where the prey have grown to carrying capacity. Ahead of the wave front, i.e., for z → + ∞, we have N = 1 and P = 0. Behind the wave front, i.e., for z → − ∞, predators and prey approach their coexistence state (N *,P *), cf. Fig. 1. Dunbar (1983, 1984) has proven the existence of such traveling waves and shown that their minimum wave speed is the one given in Eq. 10. This can also be heuristically derived by approximating N ≈ 1 and P ≈ 0 at the wave fronts (cf. Shigesada and Kawasaki 1997). System Eqs. 1922 then reduces to

$$ P' = Q ~, \label{eq:ode-P-only} $$
(25)
$$ \varepsilon Q' = -c \: Q -g(1,P) P ~, \label{eq:ode-Q-only} $$
(26)

with \(P_l=P^*\) and P r  = 0. If g(1,P) is of the type as in Eq. 4, system Eqs. 2526 corresponds to the Luther/Skellam model (Luther 1906; Skellam 1951). If g(1,P) is of the type as in Eq. 11, system Eqs. 2526 corresponds to the Fisher model. In either case, the minimum wave speed is given by Eq. 10.

The wave speeds derived here, i.e., Eqs. 8 and 10, are referred to as reaction–diffusion speeds in the main text. Finally, we return to the initial Eqs. 12 with advective flow. The advection term is equivalent to using a moving reference frame as in Eqs. 1718. That is, changing (x,t) to x − v t or x − δv t transforms Eqs. 12 to the same form as in Eqs. 1718, cf. Lewis et al. (2009). We just need to consider two types of waves for both prey and predators, depending on whether they spread downstream or upstream. Their respective speeds are given by Eqs. 5 and 6 in the main text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilker, F.M., Lewis, M.A. Predator–prey systems in streams and rivers. Theor Ecol 3, 175–193 (2010). https://doi.org/10.1007/s12080-009-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-009-0062-4

Keywords

Navigation