Skip to main content
Log in

Biotin and Zn2+ Increase Xylitol Production by Candida tropicalis

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, the medium requirements to increase the production of xylitol by using Candida tropicalis (CT) have been investigated. The technique of single addition or omission of medium components was applied to determine the nutritional requirements. The addition of amino acids such as Asp, Glu, Gln, Asn, Thr, and Gly had no significant effect on CT growth. However, in the absence of other metal ions, there was a higher concentration of cell growth and xylitol production when only Zn2+ was present in the medium. The analysis of various vitamins unveiled that biotin and thiamine were the only vitamins required for the growth of CT. Surprisingly, when only biotin was present in the medium as a vitamin, there was less growth of CT than when the medium was complete, but the amount of xylitol released was significantly higher. Overall, this study will increase the xylitol production using the single omission or addtion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Makinen KK (1979) Xylitol and oral health. Adv Food Res 25:137–157. https://doi.org/10.1016/S0065-2628(08)60236-0

    Article  CAS  PubMed  Google Scholar 

  2. Ylikahri R (1979) Metabolic and nutritional aspects of xylitol. Adv Food Res 25:159–180. https://doi.org/10.1016/S0065-2628(08)60237-2

    Article  CAS  PubMed  Google Scholar 

  3. Radhakrishnan R, Lee I-J (2017) Foliar treatment of Bacillus methylotrophicus KE2 reprograms endogenous functional chemicals in sesame to improve plant health. Indian J Microbiol 57:409–415. https://doi.org/10.1007/s12088-017-0666-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soares LCS, Chandel AK et al (2016) Screening of yeasts for selection of potential strains and their utilization for in situ microbial detoxification (ISMD) of sugarcane bagasse hemicellulosic hydrolysate. Indian J Microbiol 56:172–181. https://doi.org/10.1007/s12088-016-0573-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  6. Gao H, Kim TS, Mardina P, Zhou P, Wen F, Lee J-K (2016) Rare sugar production by coupling of NADH oxidase and l-arabinitol dehydrogenase. RSC Adv 6:66609–66616. https://doi.org/10.1039/C6RA11614K

    Article  CAS  Google Scholar 

  7. Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee J-K (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol 179:50–57. https://doi.org/10.1016/j.biortech.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  8. Prabhu P, Doan TN, Tiwari M, Singh R, Kim SC, Hong MK, Kang YC, Kang LW, Lee J-K (2014) Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS J 15:3446–3459. https://doi.org/10.1111/febs.12872

    Article  CAS  Google Scholar 

  9. Jagtap SS, Dhiman SS, Kim TS, Li J, Lee J-K (2013) Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina. Bioresour Technol 133:307–314. https://doi.org/10.1016/j.biortech.2013.01.118

    Article  CAS  PubMed  Google Scholar 

  10. Jagtap SS, Dhiman SS, Jeya M, Kim I-W, Lee J-K (2013) Characterization of a β-1,4-glucosidase from a newly isolated strain of Pholiota adiposa and its application to the hydrolysis of biomass. Biomass Bioenergy 54:181–190. https://doi.org/10.1016/j.biombioe.2013.03.032

    Article  CAS  Google Scholar 

  11. Hui G, Tiwari M, Jeya M, Lee J-K (2012) Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in L-rare sugar production. Bioorg Med Chem Lett 22:1931–1935. https://doi.org/10.1016/j.bmcl.2012.01.049

    Article  CAS  Google Scholar 

  12. Jeya M, Nguyen N-P-T, Moon H-J, Kim S-H, Lee J-K (2010) Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresour Technol 101:8742–8749. https://doi.org/10.1016/j.biortech.2010.06.055

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Lim B-C, Yeom S-J, Kim Y-S, Kim HJ, Lee J-K, Lee SH, Kim SW, Oh DK (2008) Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose. Appl Environ Microbiol 74:2307–2313. https://doi.org/10.1128/AEM.02691-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pagolu R, Singh R, Shanmugam R, Kondaveeti S, Patel SKS, Kalia VC, Lee J-K (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  CAS  PubMed  Google Scholar 

  15. Fernandes AMO, Garcia NFL, Fonseca GG, Leite RSR, Da Paz MF (2020) Evaluation of the fermentative capacity of Saccharomyces cerevisiae CAT-1 and BB9 strains and Pichia kudriavzevii BB2 at simulated industrial conditions. Indian J Microbiol 60:494–504. https://doi.org/10.1007/s12088-020-00891-6

    Article  CAS  PubMed  Google Scholar 

  16. Veerasamy M, Venkataraman K et al (2018) Point of care tuberculosis sero-diagnosis kit for wild animals: combination of proteins for improving the diagnostic sensitivity and specificity. Indian J Microbiol 58:81–92. https://doi.org/10.1007/s12088-017-0688-7

    Article  Google Scholar 

  17. Xue D, Yao D, You X, Gong C (2020) Green synthesis of the flavor esters with a marine Candida parapsilosis esterase expressed in Saccharomyces cerevisiae. Indian J Microbiol 60:175–181. https://doi.org/10.1007/s12088-020-00856-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalia VC, Patel SKS, Cho B-K, Wood TK, Lee J-K (2021) Emerging applications of bacteria as anti-tumor agents. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.05.012

    Article  Google Scholar 

  19. Miller TL, Churchill BW (1986) Substrates for large-scale fermentations. In: Demain AL, Solomon NA (eds) Manual for industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 122–136

    Google Scholar 

  20. Kumar V, Patel SKS, Gupta RK, Otari SV, Hui G, Lee J-K, Zhang L (2019) Enhanced saccharification and fermentation of agricultural waste using an immobilized enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  21. Tiwari M, Moon H-J, Jeya M, Lee J-K (2010) Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42. Appl Microbiol Biotechnol 87:571–581. https://doi.org/10.1007/s00253-010-2478-6

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y-W, Tiwari M, Jeya M, Lee J-K (2011) Covalent immobilization of recombinant Rhizobium etli CFN42 xylitol dehydrogenase onto modified silica nanoparticles. Appl Microbiol Biotechnol 90:499–507. https://doi.org/10.1007/s00253-011-3094-9

    Article  CAS  PubMed  Google Scholar 

  23. Kalia VC, Gong C, Patel SKS, Lee J-K (2021) Regulation of plant mineral nutrition by signal molecules. Microorganisms 9:774. https://doi.org/10.3390/microorganisms9040774

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patel SKS, Gupta RK, Kalia VC, Lee J-K (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  CAS  PubMed  Google Scholar 

  25. Hong JH, Kim JH, Park GD, Lee JY, Lee J-K, Kang YC (2021) A strategy for fabricating three-dimensional porous architecture comprising metal oxides/CNT as highly active and durable bifunctional oxygen electrocatalysts and their application. Chem Eng J 414:128815. https://doi.org/10.1016/j.cej.2021.128815

    Article  CAS  Google Scholar 

  26. Kalia VC, Patel SKS, Shanmugam R, Lee J-K (2021) Polyhydroxy alkanoates: trends and advances towards biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  CAS  PubMed  Google Scholar 

  27. Kalyani D, Tiwari M, Li J, Kim SC, Kalia VC, Kang YC, Lee J-K (2015) A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS ONE 10:e0120156. https://doi.org/10.1371/journal.pone.0120156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar P, Ray S, Patel SKS, Lee J-K, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis EGU45 under high nitrogen concentration. Int J Biol Macromol 78:9–16. https://doi.org/10.1016/j.ijbiomac.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  29. Demirbas A (2021) Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fish pathogen (Yersinia ruckeri). Indian J Microbiol. https://doi.org/10.1007/s12088-021-00945-3

    Article  Google Scholar 

  30. Matthews CB, Kuo A, Love KR, Love JC (2018) Development of a general defined medium for Pichia pastoris. Biotechnol Bioeng 115:103–113. https://doi.org/10.1002/bit.26440

    Article  CAS  PubMed  Google Scholar 

  31. Patel SKS, Ray S, Prakash J, Wee JH, Kim S-Y, Lee J-K, Kalia VC (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol. 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel SKS, Kim JH, Kalia VC, Lee J-K (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99. https://doi.org/10.1007/s12088-018-0764-7

    Article  CAS  PubMed  Google Scholar 

  33. Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1986) Short protocols in molecular biology, 3rd edn. Wiley, New York, p 836

    Google Scholar 

  34. Chiang C, Knight SG (1966) d-Xylose reductase and xylitol dehydrogenase from Penicillium chrysogenum. Methods Enzymol 9:188–193. https://doi.org/10.1016/0076-6879(66)09044-X

    Article  CAS  Google Scholar 

  35. Singh RK, Singh R, Sivakumar D, Kondaveeti S, Kim T, Li J, Sung BH, Cho B-K, Kim DR, Kim SC, Kalia VC, Zhang Y-HPJ, Zhao H, Kang YC, Lee J-K (2018) Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal 8:11085–11093. https://doi.org/10.1021/acscatal.8b02646

    Article  CAS  Google Scholar 

  36. Zhu Y-H, Liu C-Y, Cai S, Guo L-B, Kim I-W, Kalia VC, Lee J-K, Zhang Y-W (2019) Cloning, expression, and characterization of a highly active alcohol dehydrogenase for production of ethyl (S)-4-chloro-3-hydroxybutyrate. Indian J Microbiol 59:225–233. https://doi.org/10.1007/s12088-019-00795-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kondaveeti S, Patel SKS, Woo J, Wee JH, Kim S-Y, Al-Raoush RI, Kim I-W, Kalia VC, Lee J-K (2020) Characterization of cellobiohydrolases from Schizophyllum commune KMJ820. Ind J Microbiol 60:160–166. https://doi.org/10.1007/s12088-019-00843-9

    Article  CAS  Google Scholar 

  38. Lee J-K, Patel SKS, Sung BH, Kalia VC (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346. https://doi.org/10.1016/j.biortech.2019.122346s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the NRF funded by the Ministry of Science, ICT & Future Planning (NRF-2019R1F1A1063131, NRF-2020R1I1A1A01073483, NRF-2019R1C1C1009766). This work was also supported by KU Research Professor program of Konkuk University. This paper was supported by Konkuk University Researcher Fund in 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Kul Lee, Vipin Chandra Kalia or In-Won Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeswaran, G., Patel, S.K.S., Kondaveeti, S. et al. Biotin and Zn2+ Increase Xylitol Production by Candida tropicalis. Indian J Microbiol 61, 331–337 (2021). https://doi.org/10.1007/s12088-021-00960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00960-4

Keywords

Navigation