Skip to main content
Log in

Comparison of Molecular Methods and BRAF Immunohistochemistry (VE1 Clone) for the Detection of BRAF V600E Mutation in Papillary Thyroid Carcinoma: A Meta-Analysis

  • Review
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The evaluation of surgically resected papillary thyroid carcinomas (PTC) by immunohistochemistry (IHC) for BRAF mutation has diagnostic, prognostic and therapeutic implications. The goal of this meta-analysis was to perform a systematic review of studies using the VE1 clone (specific for detection of the BRAF V600E mutation) on formalin-fixed paraffin embedded (FFPE) thyroid surgical resection specimens for primary papillary thyroid carcinoma. The authors’ molecular techniques, immunohistochemistry protocols, and scoring methods for VE1 immunostaining were also evaluated. This study included 4079 PTCs representing data from 23 studies. The results extracted from each study were split into two different groups, direct sequencing group or PCR group, based on the molecular “gold standard” method used to compare VE1 IHC staining. In the direct sequencing group, the IHC sensitivity was 100% (95% CI 0.97–1.00) and specificity 84% (95% 0.72–0.91). In the PCR group the sensitivity was 98% (95% CI 0.96–0.99) and specificity 89% (95% CI 0.82–0.94). Although immunohistochemical procedures varied by author, the overall performance of the VE1 clone shows that it is highly sensitive and relatively specific for detecting the BRAF V600E mutation in surgical resection specimens. However, standardization of immunohistochemical procedural method and scoring/interpretation criteria may improve the reliability and reproducibility for the use of VE1 clone for future practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013:965212.

    PubMed  PubMed Central  Google Scholar 

  2. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115(16):3801–7.

    PubMed  Google Scholar 

  3. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol Biomark Prev. 2009;18(3):784–91.

    Google Scholar 

  4. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, Behera M. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    PubMed Central  Google Scholar 

  5. TCGA study improves understanding of genetic drivers of thyroid cancer - The Cancer Genome Atlas. https://cancer.gov/. Accessed 31 Oct 2019.

  6. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore). 2012;91(5):274–86.

    CAS  Google Scholar 

  7. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.

    CAS  PubMed  Google Scholar 

  8. Clinical Trials—My Cancer Genoma Atlas. https://llwww.mycancergenome.org/. Accessed 31 Oct 2019.

  9. Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 2011;122(1):11–9.

    CAS  PubMed  Google Scholar 

  10. Pyo JS, Sohn JH, Kang G. BRAF immunohistochemistry using clone VE1 is strongly concordant with BRAF(V600E) mutation test in papillary thyroid carcinoma. Endocr Pathol. 2015;26(3):211–7.

    CAS  PubMed  Google Scholar 

  11. Bullock M, O'Neill C, Chou A, Clarkson A, Dodds T, Toon C, et al. Utilization of a MAB for BRAF(V600E) detection in papillary thyroid carcinoma. Endocr Relat Cancer. 2012;19(6):779–84.

    CAS  PubMed  Google Scholar 

  12. Dvorak K, Aggeler B, Palting J, McKelvie P, Ruszkiewicz A, Waring P. Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: impact of pre-analytical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma. Pathology. 2014;46(6):509–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT, Cohen C. Immunohistochemical Investigation of BRAF p. V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol. 2014;22(8):562–7.

    CAS  PubMed  Google Scholar 

  14. Kim YH, Choi SE, Yoon SO, Hong SW. A testing algorithm for detection of the B-type Raf kinase V600E mutation in papillary thyroid carcinoma. Hum Pathol. 2014;45(7):1483–8.

    CAS  PubMed  Google Scholar 

  15. Kim JK, Seong CY, Bae IE, Yi JW, Yu HW, Kim SJ, et al. Comparison of immunohistochemistry and direct sequencing methods for identification of the BRAF(V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol. 2018;25(6):1775–811.

    PubMed  Google Scholar 

  16. Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012;36(6):844–50.

    PubMed  Google Scholar 

  17. Loo E, Khalili P, Beuhler K, Siddiqi I, Vasef MA. BRAF V600E mutation across multiple tumor types: correlation Between DNA-based sequencing and mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol. 2018;26(10):709–13.

    CAS  PubMed  Google Scholar 

  18. Martinuzzi C, Pastorino L, Andreotti V, Garuti A, Minuto M, Fiocca R, et al. A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer. Endocrine. 2016;53(3):672–80.

    CAS  PubMed  Google Scholar 

  19. Oh HS, Kwon H, Park S, Kim M, Jeon MJ, Kim TY, et al. Comparison of immunohistochemistry and direct sanger sequencing for detection of the BRAF(V600E) mutation in thyroid neoplasm. Endocrinol Metab (Seoul). 2018;33(1):62–9.

    CAS  Google Scholar 

  20. Chen J, Qiu H, Zhang M, Gu T, Shao S, Huang Y, et al. Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA. Biosens Bioelectron. 2015;68:550–5.

    CAS  PubMed  Google Scholar 

  21. Zagzag J, Pollack A, Dultz L, Dhar S, Ogilvie JB, Heller KS, et al. Clinical utility of immunohistochemistry for the detection of the BRAF v600e mutation in papillary thyroid carcinoma. Surgery. 1204discussion;154(6):1199–204 discussion (204–5).

    PubMed  PubMed Central  Google Scholar 

  22. Xin WQ, Xin QQ, Yuan Y, Chen S, Gao XL, Zhao Y, et al. Comparison of flow diversion and coiling for the treatment of unruptured intracranial aneurysms. World Neurosurg. 2019;128:464–72.

    PubMed  Google Scholar 

  23. Zhu X, Luo Y, Bai Q, Lu Y, Lu Y, Wu L, et al. Specific immunohistochemical detection of the BRAF V600E mutation in primary and metastatic papillary thyroid carcinoma. Exp Mol Pathol. 2016;100(1):236–41.

    CAS  PubMed  Google Scholar 

  24. Chen D, Qi W, Zhang P, Zhang Y, Liu Y, Guan H, et al. Investigation of BRAF V600E detection approaches in papillary thyroid carcinoma. Pathol Res Pract. 2018;214(2):303–7.

    CAS  PubMed  Google Scholar 

  25. de Biase D, Cesari V, Visani M, Casadei GP, Cremonini N, Gandolfi G, et al. High-sensitivity BRAF mutation analysis: BRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(8):E1530–E15381538.

    PubMed  Google Scholar 

  26. Abd Elmageed ZY, Sholl AB, Tsumagari K, Al-Qurayshi Z, Basolo F, Moroz K, et al. Immunohistochemistry as an accurate tool for evaluating BRAF-V600E mutation in 130 samples of papillary thyroid cancer. Surgery. 2017;161(4):1122–8.

    PubMed  Google Scholar 

  27. Ilie MI, Lassalle S, Long-Mira E, Bonnetaud C, Bordone O, Lespinet V, et al. Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid. 2014;24(5):858–66.

    CAS  PubMed  Google Scholar 

  28. Jung YY, Yoo JH, Park ES, Kim MK, Lee TJ, Cho BY, et al. Clinicopathologic correlations of the BRAFV600E mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma. Pathol Res Pract. 2015;211(2):162–70.

    CAS  PubMed  Google Scholar 

  29. McKelvie PA, Chan F, Yu Y, Waring P, Gresshoff I, Farrell S, et al. The prognostic significance of the BRAF V600E mutation in papillary thyroid carcinoma detected by mutation-specific immunohistochemistry. Pathology. 2013;45(7):637–44.

    CAS  PubMed  Google Scholar 

  30. Na JI, Kim JH, Kim HJ, Kim HK, Moon KS, Lee JS, et al. VE1 immunohistochemical detection of the BRAF V600E mutation in thyroid carcinoma: a review of its usefulness and limitations. Virchows Arch. 2015;467(2):155–68.

    CAS  PubMed  Google Scholar 

  31. Paja Fano M, Ugalde Olano A, Fuertes Thomas E, Oleaga AA. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction. Endocrinol Diabetes Nutr. 2017;64(2):75–81.

    PubMed  Google Scholar 

  32. Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN, Hoang MP. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol. 2013;44(11):2563–70.

    CAS  PubMed  Google Scholar 

  33. Sun J, Zhang J, Lu J, Gao J, Lu T, Ren X, et al. Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. Int J Clin Exp Pathol. 2015;8(11):15072–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Szymonek M, Kowalik A, Kopczynski J, Gasior-Perczak D, Palyga I, Walczyk A, et al. Immunohistochemistry cannot replace DNA analysis for evaluation of BRAF V600E mutations in papillary thyroid carcinoma. Oncotarget. 2017;8(43):74897–909.

    PubMed  PubMed Central  Google Scholar 

  35. Li X, Tian X, Lv L, Hei G, Huang X, Fan X, et al. Microglia activation in the offspring of prenatal Poly I: C exposed rats: a PET imaging and immunohistochemistry study. Gen Psychiatr. 2018;31(1):e000006.

    PubMed  PubMed Central  Google Scholar 

  36. Crescenzi A, Guidobaldi L, Nasrollah N, Taccogna S, Cicciarella Modica DD, Turrini L, et al. Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res. 2014;46(5):370–4.

    CAS  PubMed  Google Scholar 

  37. da Silva RC, de Paula HS, Leal CB, Cunha BC, de Paula EC, Alencar RC, et al. BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas. Genet Mol Res. 2015;14(2):5065–75.

    PubMed  Google Scholar 

  38. StataCorp. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP; 2013.

  39. Zhu G, Deng Y, Pan L, Ouyang W, Feng H, Wu J, et al. Clinical significance of BRAFV600E mutation in PTC and its effect on radioiodine therapy. Endocr Connect. 2019;8:754–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghossein RA, Katabi N, Fagin JA. Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J Clin Endocrinol Metab. 2013;98(8):E1414–E14211421.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Singarayer R, Mete O, Perrier L, Thabane L, Asa SL, Van Uum S, et al. A systematic review and meta-analysis of the diagnostic performance of BRAF V600E immunohistochemistry in thyroid histopathology. Endocr Pathol. 2019;30(3):201–18.

    CAS  PubMed  Google Scholar 

  42. Anderson S, Bloom KJ, Vallera DU, Rueschoff J, Meldrum C, Schilling R, et al. Multisite analytic performance studies of a real-time polymerase chain reaction assay for the detection of BRAF V600E mutations in formalin-fixed, paraffin-embedded tissue specimens of malignant melanoma. Arch Pathol Lab Med. 2012;136(11):1385–91.

    CAS  PubMed  Google Scholar 

  43. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–68.

    CAS  PubMed  Google Scholar 

  44. Hu S, Xu-Monette ZY, Balasubramanyam A, Manyam GC, Visco C, Tzankov A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(14):2715–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147–53.

    CAS  PubMed  Google Scholar 

  46. Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn. 2019;21(4):553–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol. 2019;72(7):460–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33(1):38–46.

    CAS  PubMed  Google Scholar 

  49. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017;41(11):1547–51.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to Dr. Girish Venkataraman (University of Chicago, Director of the Immunohistochemistry Lab in the Department of Pathology, Section of Hematopathology) for his guidance regarding BRAF immunohistochemical techniques.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle G. Parker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, K.G., White, M.G. & Cipriani, N.A. Comparison of Molecular Methods and BRAF Immunohistochemistry (VE1 Clone) for the Detection of BRAF V600E Mutation in Papillary Thyroid Carcinoma: A Meta-Analysis. Head and Neck Pathol 14, 1067–1079 (2020). https://doi.org/10.1007/s12105-020-01166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01166-8

Keywords

Navigation