Skip to main content
Log in

Gestures Enhance Executive Functions for the Understating of Mathematical Concepts

  • Regular Article
  • Published:
Integrative Psychological and Behavioral Science Aims and scope Submit manuscript

Abstract

This article discusses the role of gestures in enhancing inhibition, working memory, and cognitive flexibility as the three components of executive functions during the processing of mathematical concepts that are metaphorically described in terms of motion events. Gestures can contribute to the process of inhibition by highlighting the relevant information and keeping the irrelevant information out of focus of attention. Gestures contribute to working memory in two ways during mathematical processing. They increase activity in the motor areas of the brain. Therefore, they may facilitate the process of understanding those mathematical concepts that are described in terms of motion event, as the motor system could play a role in the grounding and the processing of these concepts. Also, gestures can function as an external working memory and keep the visual representation of some parts of information for a short period of time in order to manipulate that information in later stages of processing. Gestures enhance cognitive flexibility by allowing us to have a spatial representation of that concept or idea for a period of time. During this time, we can shift our perspective and process that concept or idea from a variety of perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  • Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14(1), 37–56

    Article  Google Scholar 

  • Alibali, M. W., & Goldin-Meadow, S. (1993). Transitions in learning: What the hands reveal about a child’s state of mind. Cognitive Psychology, 25, 468–523

    Article  PubMed  Google Scholar 

  • Alibali, M. W., & Kita, S. (2010). Gesture highlights perceptually present information for speakers. Gesture, 10(1), 3–28

    Article  Google Scholar 

  • Alibali, M. W., & Nathan, M. J. (2007). Teachers’ gestures as a means of scaffolding students’ understanding: Evidence from an early algebra lesson. In R. Goldman, R. Pea, B. Barron, & S. J. Derry (Eds.), Video research in the learning sciences (pp. 349–365). Mahwah, NJ: Erlbaum

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1994).Developments in the concept of working memory Neuropsychology, 8(4),485–493

    Google Scholar 

  • Basilio, M., & Rodríguez, C. (2017). How toddlers think with their hands: social and private gestures as evidence of cognitive self-regulation in guided play with objects. Early Child Development and Care, 187(12), 12. DOI: https://doi.org/10.1080/03004430.2016.1202944

    Article  Google Scholar 

  • Bates, E., Thal, D., Whitesell, K., Fenson, L., & Oakes, L. (1989). Integrating language and gesture in infancy. Developmental Psychology, 25(6), 1004–1019. https://doi.org/10.1037/0012-1649.25.6.1004

    Article  Google Scholar 

  • Burgess, P. W., & Simons, J. S. (2005). Theories of frontal lobe executive function: clinical applications. In P. W. Halligan, & D. T. Wade (Eds.), Effectiveness of Rehabilitation for Cognitive Deficits (pp. 211–231). New York: Oxford University Press

    Chapter  Google Scholar 

  • Cavalcante, S., Rodríguez, C., & Martí, E. (2019). Early understanding of cardinal number value: Semiotic, social, and pragmatic dimensions in a case study with a child from 2 to 3 years old. Integrative Psychological and Behavioral Science, 53(3), 397–417. https://doi.org/10.1007/s12124-018-9464-4

    Article  PubMed  Google Scholar 

  • Camaioni, L., Perucchini, P., Muratori, F., & Milone, A. (1997). A longitudinal examination of the communicative gestures deficit in young children with autism. Journal of Autism and Developmental Disorders, 27(6), 715–725. https://doi.org/10.1023/A:1025858917000

    Article  PubMed  Google Scholar 

  • Cameron-Faulkner, T., Malik, N., Steele, C., Coretta, S., Serratrice, L., & Lieven, E. (2021). A cross-cultural analysis of early prelinguistic gesture development and its relationship to language development. Child Development, 92(1), 273–290. doi:https://doi.org/10.1111/cdev.13406

    Article  PubMed  Google Scholar 

  • Church, R. B., & Goldin-Meadow, S. (1986). The mismatch between gesture and speech as an index of transitional knowledge. Cognition, 23(1), 43–71

    Article  PubMed  Google Scholar 

  • Cohen, R. L. (1981). On the generality of some memory laws. Scandinavian Journal of Psychology, 22(4), 267–281

    Article  Google Scholar 

  • Cook, S. W., & Fenn, K. M. (2017). The function of gesture in learning and memory. In R. B. Church, M. W. Alibali, & S. D. Kelly (Eds.), Why Gesture? How the Hands Function in Speaking, Thinking and Communicating (pp. 129–153). John Benjamins Publishing Company

  • Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2010). Gesturing makes memories that last. Journal of Memory and Language, 63(4), 465–475. https://doi.org/10.1016/j.jml.2010.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements, lighten working memory load when explaining math. Language and Cognitive Processes, 27(4), 594–610. doi: https://doi.org/10.1080/01690965.2011.567074

    Article  PubMed  Google Scholar 

  • Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63–68

    Article  Google Scholar 

  • Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078. doi:https://doi.org/10.1016/j.neuropsychologia.2006.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168

    Article  PubMed  Google Scholar 

  • Espy, K. A. (2004). Using developmental, cognitive, and neuroscience approaches to understand executive control in young children. Developmental Neuropsychology, 26(1), 379–384

    Article  PubMed  Google Scholar 

  • Flevares, L. M., & Perry, M. (2001). How many do you see? The use of nonspoken representations in first-grade mathematics lessons. Journal of Educational Psychology, 93(2), 330–345

    Article  Google Scholar 

  • Gallese, G., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479

    Article  PubMed  Google Scholar 

  • Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychological Bulletin, 134(1), 31–60. doi:https://doi.org/10.1037/0033-2909.134.1.31

    Article  PubMed  Google Scholar 

  • Gibbs, R. W. (2006). Embodiment and Cognitive Science. Cambridge, England: Cambridge University Press

    Google Scholar 

  • Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Reviews: Cognitive Science, 1(4), 586–596

    Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2008). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272

    Article  Google Scholar 

  • Goldin-Meadow, S., Kim, S., & Singer, M. (1999). What the teachers’ hands tell the students’ minds about math. Journal of Educational Psychology, 91(4), 720–730

    Article  Google Scholar 

  • Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12(6), 516–522

    Article  PubMed  Google Scholar 

  • Goldin-Meadow, S., & Wagner, S. M. (2005). How our hands help us learn. Trends in Cognitive Sciences, 9(5), 234–241

    Article  PubMed  Google Scholar 

  • Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495–514

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Principles and Implications, 2, 24. https://doi.org/10.1186/s41235-017-0060-9

    Article  Google Scholar 

  • Khatin-Zadeh, O. (2021). How does representational transformation enhance mathematical thinking? Axiomathes. https://doi.org/10.1007/s10516-021-09602-2

  • Khatin-Zadeh, O., Yazdani-Fazlabadi, B., & Eskandari, Z. (2021). The grounding of mathematical concepts through fictive motion, gesture and the motor system. For the Learning of Mathematics, 41(3), 19–21

    Google Scholar 

  • Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic actions. Cognitive Science, 18(4), 513–549

    Article  Google Scholar 

  • Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language and Gesture (pp. 162–185). Cambridge, England: Cambridge University Press

    Chapter  Google Scholar 

  • Kita, S., Alibali., M. W., & Chu, M. (2017). How do gestures influence thinking and speaking? The gesture-for-conceptualization hypothesis. Psychological Review, 124(3), 245–266. doi:https://doi.org/10.1037/rev0000059

    Article  PubMed  Google Scholar 

  • Kita, S., & Davies, T. S. (2009). Competing conceptual representations trigger co-speech representational gestures. Language & Cognitive Processes, 24(5), 761–775

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. (2001). Where Mathematics Comes from: How the Embodied Mind Brings Mathematics into Being. New York, NY: Basic Books

    Google Scholar 

  • Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59–80. https://doi.org/10.1348/026151003321164627

    Article  Google Scholar 

  • Macedonia, M. (2019). Embodied learning: Why at school the mind needs the body. Frontiers in Psychology, (10). 10:2098. https://doi.org/10.3389/fpsyg.2019.02098

  • Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in Cognitive Science, 5(2), 299–316

    Article  PubMed  Google Scholar 

  • McNeill, D. (2005). Gesture and Thought. Chicago, IL: University of Chicago Press

    Book  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. doi:https://doi.org/10.1006/cogp.1999.0734

    Article  PubMed  Google Scholar 

  • Moreno-Núñez, A., Rodríguez, C., & Del Olmo, M. J. (2015). The rhythmic, sonorous and melodic components of adult-child-object interactions between 2 and 6 months old. Integrative Psychological and Behavioral Science, 49(4), 737–756. https://doi.org/10.1007/s12124-015-9298-2

    Article  PubMed  Google Scholar 

  • Morsella, E., & Krauss, R. M. (2004). The role of gestures in spatial working memory and speech. The American Journal of Psychology, 117(3), 411–424. doi:https://doi.org/10.2307/4149008

    Article  PubMed  Google Scholar 

  • Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical cognition: Promoting mathematical insight and proof using action and language. Cognitive Research: Principles and Implications, 2, 9.10.1186/s41235-016-0040-5

  • Núñez, R. (2005). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In F. Iida, R. Pfeifer, L. Steels, & Y. Kuniyoshi (Eds.), Embodied Artificial Intelligence (pp. 54–73). Berlin, Germany: Springer-Verlag

    Google Scholar 

  • Núñez, R., & Lakoff, G. (1998). What did Weierstrass really define? The cognitive structure of natural and δ-ε continuity. Mathematical Cognition, 4(2), 85–101

    Article  Google Scholar 

  • Perry, M., Church, R. B., & Goldin-Meadow, S. (1988). Transitional knowledge in the acquisition of concepts. Cognitive Development, 3(4), 359–400

    Article  Google Scholar 

  • Ping, R. M., & Goldin-Meadow, S. (2010). Gesturing saves cognitive resources when talking about nonpresent objects. Cognitive Science, 34(4), 602–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: conflict, target detection, and cognitive control. In R. Parasuraman (Ed.), The Attentive Brain (p. 401423). Cambridge: MIT Press

    Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70. https://doi.org/10.1207/S15327833MTL0501_02

    Article  Google Scholar 

  • Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70, 111–126

    Article  Google Scholar 

  • Ravizza, S. (2003). Movement and lexical access: Do noniconic gestures aid in retrieval? Psychonomic Bulletin & Review, 10(3), 610–615

    Article  Google Scholar 

  • Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316, 1128–1129

    Article  PubMed  Google Scholar 

  • Rodríguez, C., & Moreno-Llanos, I. (2020). A pragmatic turn in the study of early executive functions by object use and gestures. A case study from 8 to 17 months of age at a nursery school. Integrative psychological and Behavioral Science. https://doi.org/10.1007/s12124-020-09578-5

    Article  PubMed  Google Scholar 

  • Rodríguez, C., & Palacios, P. (2007). Do private gestures have a self-regulatory function? A case study. Infant Behavior & Development, 30(2), 180–194. doi:https://doi.org/10.1016/j.infbeh.2007.02.010

    Article  Google Scholar 

  • Singer, M. A., Radinsky, J., & Goldman, S. R. (2008). The role of gesture in meaning construction. Discourse Processes, 45(4–5), 365–386

    Article  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661. doi:https://doi.org/10.1126/science.283.5408.1657

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi:https://doi.org/10.1016/j.actpsy.2010.02.006

    Article  PubMed  Google Scholar 

  • Volterra, V., Capirci, O., Rinaldi, P., & Sparaci, L. (2018). From action to spoken and signed language through gesture: Some basic developmental issues for a discussion on the evolution of the human language-ready brain. Interaction Studies: Social Behavior and Communication in Biological and Artificial Systems, 19(1–2), 216–238. https://doi.org/10.1075/is.17027.vol

    Article  Google Scholar 

  • Wagner, S. M., Nusbaum, H., & Goldin-Meadow, S. (2004). Probing the mental representation of gesture: Is handwaving spatial? Journal of Memory and Language, 50(4), 395–407

    Article  Google Scholar 

  • Wesp, R., Hess, J., Keutmann, D., & Wheaton, K. (2001). Gestures maintain spatial imagery. American Journal of Psychology, 114(4), 591–600

    Article  Google Scholar 

  • Yeo, A., Ledesma, I., Nathan, M. J., Alibali, M. W., & Church, B., R (2017). Teachers’ gestures and students’ learning: sometimes “hands off” is better. Cognitive. Research: Principles and Implications, 2, https://doi.org/10.1186/s41235-017-0077-0

Download references

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Khatin-Zadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatin-Zadeh, O., Eskandari, Z. & Marmolejo-Ramos, F. Gestures Enhance Executive Functions for the Understating of Mathematical Concepts. Integr. psych. behav. (2022). https://doi.org/10.1007/s12124-022-09694-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12124-022-09694-4

Keywords

Navigation