Skip to main content
Log in

The removal of mercury (II) from water by Ag supported on nanomesoporous silica

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

In this study, the synthesis of SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %) has been investigated under acidic conditions by using P123 as a template via the direct method. The nanocomposites of SBA-15 were synthesized by the same method and by the addition of silver salt. Finally, the nanocomposite materials were examined for the removal of mercury ions from wastewater as an adsorbent by the reverse titration method. Characterization was carried out through x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption-desorption (Brunauer–Emmett–Teller). XRD spectra confirmed the presence of silver nanoparticles within the amorphous silica matrix of SBA-15. The Barrett–Joyner–Halenda analysis showed that SBA-15 and SBA-15/Ag have a narrow pore size distribution. SEM images demonstrated that the morphology of the matrix of SBA-15 is in spherical state. Furthermore, wavelength dispersive x-ray spectroscopy identified the presence and distribution of silver nanoparticles inside the pore channels and outside of them. Typical TEM images of SBA-15 and SBA-15/Ag (5 wt.%) indicated a regular hexagonal pore structure with long-range order and long channels. In SBA-15/Ag (5 wt.%) sample, the nanoparticles of silver was found into the pores and outside of them. The removal of mercury ions from wastewater using mesoporous silica nanocomposite containing silver nanoparticles was studied by the reverse titration analysis. The best capacity of adsorption of mercury ions from wastewater was obtained for SBA-15/Ag (5 wt.%) sample, which was equal to 42.26 mg/g in 20 min at pH of 7. The Freundlich model was used to explain the adsorption characteristics for the heterogeneous surface, and \( {K}_{\mathrm{f}} \) (adsorption capacity) and n (adsorption intensity) were determined for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %). The value of R 2 was about 0.99, 0.99, 0.98, and 0.98 and K f was about 42, 48, 58, and 58 mg/g for SBA-15/Ag, SBA-15/Ag (2.5 %), SBA-15/Ag (5 %), and SBA-15/Ag (10 %), respectively. Furthermore, the values of n >1 show a favorable adsorption process for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials. Moreover, the Langmuir isotherm model evaluation showed that the correlation coefficients for all concentrations were R 2 >0.99, indicating that Hg (II) ions were adsorbed on the surface of SBA-15/Ag via chemical and physical interaction. Additionally, the analytic hierarchy process (AHP) and Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) methods that depend on the criteria of the surface area, amount of adsorbent, pore volume, and cost of synthesis were used. The evaluation of results showed that the best sample was SBA-15/Ag (5 wt.%). Furthermore, the research work highlighted the antibacterial nanocomposite with suitable adsorption of Hg (II) ions from water solutions and supported its potential for environmental applications. This nanocomposite can be used in the absorption domain of Hg (II) ions from water solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Zahir, S.J. Rizwi, S.K. Haq, and R.H. Khan (2005) Environ Toxicol Pharmacol 20:351

  2. W.H. Schroeder, J. Munthe (1998) Atmos Environ 32:809

  3. P. Holmes, K.A.F. James, L.S. Levy (2009) Sci Total Environ 408:171

  4. R.C. Srivastava (2004) Centre for Environmental Pollution Monitoring and Mitigation, India

  5. L.Y. Blue, M.A.V. Aelstyn, M. Matlock, D.A. Atwood (2008) Water Res 42:2025

  6. A S. Tawfik (2016) Desalination Water Treat 57:10730

  7. A.S. Tawfikh, A.A. Abdulaziz (2015) Surf Interface Anal 47:785

  8. A.S. Tawfih (2015) J Water Supply: Res Technol AQUA 64:892

  9. A.S. Tawfik (2015) Environ Sci Pollut Res 22:16721

  10. W.H. Chen (2012) Rsc Adv 2:6380

  11. T. Bao, T. Chen, M.L Wille, X. Zou, R.L Frost, C. Qing, D. Chen (2016) Desalination Water Treat 57:19216

  12. A.S. Tawfik, R.A. Khalid, S.A.A. Mohammed (2015) J Taiwan Inst Chem Eng 55:159

  13. I. Uzun, F. Güzel (2000) Turk J Chem 24:291

  14. B. Biskup, B. Subotic (2004) Sep Purif Technol 37:17–31

  15. A. Cincotti, A. Mameli, A.M. Locci, R. Orru, G. Cao (2006) Ind Eng Chem Res 45:1074

  16. S. Gier, W.D. Johns (2000) Appl Clay Sci 16:289

  17. M.H. Koppelman, J.G. A. Dillard (1977) Clays Clay Miner 25:457

  18. D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer (2008) Bioresour Technol 99:6709

  19. V.B.H. Dang, H.D. Doan, T. Dang-Vuc, A. Lohi (2009) Bioresour Technol 100:211

  20. T.M. Zewail, S.A.M. El-Garf (2010) Desalin Water Treat 22:363

  21. R.K. Nagarale, G.S. Gohil, V.K. Shahi (2006) Adv Colloid Interface Sci 119:97

  22. L. Wang, X.L. Wu, W.H. Xu, X.-J. Huang, J.H. Liu, A.W. Xu (2012) Appl Mater Interfaces 4:2686

  23. A.S. Özcan, A. Özcan (2004) J Colloid Interf Sci 276:39

  24. S.S. Ahluwali, D. Goyal (2005) J Eng Life Sci 5:158–162

  25. F. Granados-Correa, J. Jiménez-Becerril (2009) J Hazard Mater 162:1178

  26. Z. Shahmohammadi, H. Moazed, H. Jafarzadeh, H.N. Haghighat, P. Jou (2008) J Water Wastewater 67:27

  27. M. Ezoddin, F. Shemirani, K.H. Abdi, M. Khosravi Saghezchi, M.R. Jamali (2010) J Hazard Mater 178:900

  28. B. Geng, Z. Jin, T. Li, X. Qi (2009) J Chemosphere 75:825

  29. J.P. Ruparelia, S.P. Duttagupta, A.K. Chatterjee, S. Mukherji (2008) J Desalination 232:145

  30. R. Fouladi Fard, A. Azimi, N. Bidhendi (2008) J Water Wastewater 67:2

  31. E. Pehlivan, G. Arslan (2007) J Fuel Process Technol 88:99

  32. O. Hakami, Y. Zhang, J. Charles (2012) J Banks Water Res 46:3913

  33. E.M. Johansson (2010) Nanostruc Mater Divis sweden 91:305

  34. O.C. Gobin, S. Kaliaguine 2006 Laval University, Ste-Foy, Quebec, Canada

  35. B.Naik, S. Hazra, V.S. Prasad, N.N. Ghosh (2011) Catal Commu 12:1104

  36. N. Pradhan, A. Pal, T. Pal (2002) Collo Surf A 196:247–257

  37. E. Sumesh, M.S. Bootharaju, I. Anshup, A. Pradeep (2011) J Hazard Mater 189:450

  38. R.J. Kalbasi, N. Mosaddegh, A. Abbaspourrad (2012) App Catal A: Gen 78:423–424

  39. W. Zhu, Y. Han, L. An (2005) Microp Mesop Mater 80:221

  40. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska (1985) Pure Appl Chem 57:603

  41. S. Besson, T. Gacoin, C. Ricolleau, J.P. Boilot (2003) Chem Commun 360

  42. J. Kenkel (2003) Analytical Chemistry for Technicians, 1 (3 ed.). CRC Press, pp 108–109

  43. Y. Sharma, V. Srivastava, S. Mukherjee (2010) J Chem Eng Data 55:2390

  44. B.H. Hameed (2009) J Hazard Mater 162:939

  45. B. Naika, V. Desaib, M. Kowshikb, V.S. Prasadc, G.F. Fernandod, N. Nath Ghosh (2011) Particuology 9:243

  46. R. Kumar, N.R. Bishnoi, K.G. Bishnoi (2008) J Chem Eng 135:202

  47. M. Liu, L. Hou, B. Xi, Y. Zhao, X. Xia (2013) App Surf Sci 273 706

  48. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen (1966) In Eng Chem Fundam 5:212

  49. H.M.F. Freundlich (1906) Phys Chem 57:384

  50. I. Langmuir (1918) J Am Chem Soc 40:1361

  51. R.V. Rao (2004) J Mater Process Technol 152:71

  52. E. Albayrak (2004) J Intell Manuf 15:491–503

  53. M. Dagdeviren, S. Yavuz, N. Kılınç (2009) Expert Syst Appl 36:8143

  54. M. Yousefpour, A. Rahimi (2014) Mater Des 54:382

  55. S.J. Chen, C.L. Hwang (1992) Springer, Berlin

  56. C.L. Hwang, K. Yoon (1981) Springer, Berlin Heidelberg

  57. J.W. Wang, C.H. Cheng, K.C. Huang (2009a) Appl Soft Comput 9:37

  58. J.F. Ding (2011) J Mar Sci Techn 19:341

  59. S. Jakovljevi, W. Hendrix, D. Havermans, J. Meneve (2009) Wear 206:417

  60. S. Perez-Vega, S. Peter, I. Salmeron-Ochoa, A. Nieva-de la Hidalga, P.N. Sharratt (2011) Proc Saf Environ Prot 89:261

  61. D. Dalalah, F. AL-Oqla, M. Hayajneh, (2010) Jordan J Mech Ind Eng 4

  62. R. Khorshidi, A. Hassani, A. Honarbakhsh Rauof, M. Emamy (2013) Mater Des 46:442

  63. M. Dag˘deviren, S. Yavuz, N. Kılınc (2009) Expert Syst Appl 36:143

Download references

Acknowledgments

The authors thank Semnan University and Nanonafez Pishroo Kavir Company for supporting some of the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardali Yousefpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganzagh, M.A.A., Yousefpour, M. & Taherian, Z. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J Chem Biol 9, 127–142 (2016). https://doi.org/10.1007/s12154-016-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-016-0157-5

Keywords

Navigation