Skip to main content
Log in

Bioprospecting Sulfuric Acid Assisted Hydrothermal Pretreatment of Sugarcane Bagasse and Microbial Community Structure for Methane Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The complex chemical and structural arrangement of lignocellulosic biomass demand a pretreatment step to dismantle its coherent nature. The current study was designed to study H2SO4 impregnation before hydrothermal pretreatment (HP) of sugarcane bagasse for biogas production using response surface methodology based on defining factors: temperature (160, 180, 200 °C), time (5, 12, 19 min), and H2SO4 concentration (1, 2, 3% w/v). The H2SO4 impregnation had a paramount impact in combination with temperature and treatment time parameters. The lowest solid yield 12.3% was recorded in pretreatment run A-HSO (200 °C, 19 min, 3% H2SO4), up to 100% xylan removal was noted in four pretreatment runs (A-HSO; 200 °C, 19 min, 3% H2SO4, B-HSO; 200 °C, 19 min, 1% H2SO4, C-HSO; 200 °C, 5 min, 3% H2SO4, and O-HSO; 213.6 °C, 12 min, 2% H2SO4), maximum klason lignin increase in insoluble solid fraction (ISF) verified was 358.85% in pretreatment run O-HSO at 213.6 °C, while glucan content reduction (33.18–74.14%) was also observed in pretreatment runs A-HSO, C-HSO, and O-HSO. Results verified maximum methane recovery of 160.16 NmL (g TVS)−1 in pretreatment run I-SHO (180 °C, 12 min, 2% H2SO4). Microbial community analysis observed the predominance of Flavobacterium and Desulfosporosinus genera of Bacterial domain and Methanolinea of Archaea domain. H2SO4 impregnation before HP though not suitable for methane production from ISF could be employed in a biorefinery perspective to obtain valuables (chemicals and fuels) due to the production of organic acids rich liquid stream and lignin-rich solid fraction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APHA:

American Public Health Association

BMP:

Biomethane potential

CCD:

Central composite design

COD:

Chemical oxygen demand

DM:

Dry matter

GAIN:

Global Agricultural Information Network

HP:

Hydrothermal pretreatment

HPLC:

High-performance liquid chromatography

NCBI:

National Center for Biotechnology Information

OTU:

Operational taxonomic unit

PCR:

Polymerase chain reaction

RDP:

Ribosomal Database Project

SB:

Sugarcane bagasse

SEM:

Scanning electron microscopy

TCD:

Thermal conductivity detector

TS:

Total solids

TVS:

Total volatile solids

References

  1. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  2. Dell RM, Rand DAJ (2001) Energy storage — a key technology for global energy sustainability. J Power Sources 100:2–17. https://doi.org/10.1016/S0378-7753(01)00894-1

    Article  CAS  Google Scholar 

  3. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45:651–671. https://doi.org/10.1016/S0196-8904(03)00177-8

    Article  CAS  Google Scholar 

  4. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  5. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397. https://doi.org/10.1016/j.biortech.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  6. Bušić A, Kundas S, Morzak G et al (2018) Recent trends in biodiesel and biogas production. Food Technol Biotechnol 56:152–173. https://doi.org/10.17113/ftb.56.02.18.5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barros S (2018) Brazil - Sugar Annual. Global Agricultural Information Network Report, USDA Foreign Agricultural Service https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar%20Annual_Sao%20Paulo%20ATO_Brazil_4-13-2018.pdf. Accessed 24 March 2021 

  8. Canilha L, Chandel AK, Suzane dos Santos Milessi T et al (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:15–15. https://doi.org/10.1155/2012/989572

    Article  CAS  Google Scholar 

  9. Ruiz HA, Conrad M, Sun S-N, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  10. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

    Article  CAS  Google Scholar 

  11. Ahmad F, Silva EL, Varesche MBA (2018) Hydrothermal processing of biomass for anaerobic digestion – a review. Renew Sust Energ Rev 98:108–124. https://doi.org/10.1016/j.rser.2018.09.008

    Article  CAS  Google Scholar 

  12. Torres AI, Ashraf MT, Chaturvedi T, Schmidt JE, Stephanopoulos G (2017) Hydrothermal pretreatment: process modeling and economic assessment within the framework of biorefinery processes. In: Ruiz HA, Hedegaard Thomsen M, Trajano HL (eds) Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass. Springer International Publishing, Cham, pp 207–235

    Chapter  Google Scholar 

  13. Suriyachai N, Weerasai K, Upajak S, Khongchamnan P, Wanmolee W, Laosiripojana N, Champreda V, Suwannahong K, Imman S (2020) Efficiency of catalytic liquid hot water pretreatment for conversion of corn stover to bioethanol. ACS Omega 5:29872–29881. https://doi.org/10.1021/acsomega.0c04054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dimitrellos G, Lyberatos G, Antonopoulou G (2020) Does acid addition improve liquid hot water pretreatment of lignocellulosic biomass towards biohydrogen and biogas production? Sustainability 12:8935. https://doi.org/10.3390/su12218935

    Article  CAS  Google Scholar 

  15. Wang D, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Luo T, Mei Z (2018) Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresour Technol 249:117–124. https://doi.org/10.1016/j.biortech.2017.09.197

    Article  CAS  PubMed  Google Scholar 

  16. Hashemi SS, Karimi K, Mirmohamadsadeghi S (2019) Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 172:545–554. https://doi.org/10.1016/j.energy.2019.01.149

    Article  CAS  Google Scholar 

  17. Gong L, Yang X, Wang Z, Zhou J, You X (2019) Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Adv 9:19104–19113. https://doi.org/10.1039/C9RA01662G

    Article  CAS  Google Scholar 

  18. Ahmad F, Sakamoto IK, Adorno MAT, Motteran F, Silva EL, Varesche MBA (2018) Methane production from hydrogen peroxide assisted hydrothermal pretreatment of solid fraction sugarcane bagasse. Waste Biomass Valorization 11:31–50. https://doi.org/10.1007/s12649-018-0452-1

    Article  CAS  Google Scholar 

  19. Marasabessy A, Kootstra AMJ, Sanders JP, Weusthuis RA (2012) Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation. Int J Energy Environ Eng 3:15. https://doi.org/10.1186/2251-6832-3-15

    Article  CAS  Google Scholar 

  20. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL. https://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed 24 March 2021

  22. Motteran F, Braga JK, Sakamoto IK, Varesche MBA (2014) Methanogenic potential of an anaerobic sludge in the presence of anionic and nonionic surfactants. Int Biodeterior Biodegrad 96:198–204. https://doi.org/10.1016/j.ibiod.2014.10.001

    Article  CAS  Google Scholar 

  23. Tsuchida JE, Rezende CA, de Oliveira-Silva R, Lima MA, d’Eurydice MN, Polikarpov I, Bonagamba TJ (2014) Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels 7:7. https://doi.org/10.1186/s13068-014-0127-5

    Article  CAS  Google Scholar 

  24. Caza N, Bewtra JK, Biswas N, Taylor KE (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res 33:3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9

    Article  CAS  Google Scholar 

  25. Zinder SH, Cardwell SC, Anguish T, Lee M, Koch M (1984) Methanogenesis in a thermophilic (58 °C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl Environ Microbiol 47:796–807

    Article  CAS  Google Scholar 

  26. Hansen TL, Schmidt JE, Angelidaki I, Marca E, Jansen JC, Mosbæk H, Christensen TH (2004) Method for determination of methane potentials of solid organic waste. Waste Manag 24:393–400. https://doi.org/10.1016/j.wasman.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  27. Zwietering MH, Jongenburger I, Rombouts FM, van ’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Article  CAS  Google Scholar 

  28. Larnaudie V, Ferrari MD, Lareo C (2019) Enzymatic hydrolysis of liquid hot water-pretreated switchgrass at high solid content. Energy Fuel 33:4361–4368. https://doi.org/10.1021/acs.energyfuels.9b00513

    Article  CAS  Google Scholar 

  29. Zhang Z, Rackemann DW, Doherty WOS, O’Hara IM (2013) Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnol Biofuels 6:153. https://doi.org/10.1186/1754-6834-6-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walters WA, Caporaso JG, Lauber CL et al (2011) PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics (Oxford, England) 27:1159–1161. https://doi.org/10.1093/bioinformatics/btr087

    Article  CAS  Google Scholar 

  32. Lu XB, Zhang YM, Angelidaki I (2009) Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour Technol 100:3048–3053. https://doi.org/10.1016/j.biortech.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  33. Yang HY, Wang K, Xu F, Sun RC, Lu Y (2012) H2SO4-catalyzed hydrothermal pretreatment of triploid poplar to enhance enzymatic hydrolysis. Ind Eng Chem Res 51:11598–11604. https://doi.org/10.1021/ie300895y

    Article  CAS  Google Scholar 

  34. Sakaki T, Shibata M, Sumi T, Yasuda S (2002) Saccharification of cellulose using a hot- compressed water-flow reactor. Ind Eng Chem Res 41:661–665. https://doi.org/10.1021/ie010614s

    Article  CAS  Google Scholar 

  35. Rocha GJM, Silva VFN, Martin C et al (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech 15:390–398

    Article  CAS  Google Scholar 

  36. Senila L, Senila M, Costiug S, Miclean M, Cerasel V, Roman C (2014) The autohydrolysis of Albies Alba wood using adaptive neural fuzzy interference system mathematical modeling. Int J Green Energy 11:611–624. https://doi.org/10.1080/15435075.2013.777907

    Article  CAS  Google Scholar 

  37. Xiao L-P, Sun Z-J, Shi Z-J et al (2011) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol prodution. Biorsources 6:1576–1598

    CAS  Google Scholar 

  38. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  39. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871. https://doi.org/10.1590/S0100-40422003000600015

    Article  CAS  Google Scholar 

  40. Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS (2016) Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng 4:4529–4544. https://doi.org/10.1021/acssuschemeng.6b00535

    Article  CAS  Google Scholar 

  41. Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753. https://doi.org/10.1002/bit.24744

    Article  CAS  PubMed  Google Scholar 

  42. Kim KH, Tucker M, Nguyen Q (2005) Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresour Technol 96:1249–1255. https://doi.org/10.1016/j.biortech.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492. https://doi.org/10.1002/bit.25108

    Article  CAS  PubMed  Google Scholar 

  44. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925. https://doi.org/10.1002/bit.21959

    Article  CAS  PubMed  Google Scholar 

  45. Ahring BK, Biswas R, Ahamed A, Teller PJ, Uellendahl H (2015) Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour Technol 175:182188–182188. https://doi.org/10.1016/j.biortech.2014.10.082

    Article  CAS  Google Scholar 

  46. Kobayashi F, Take H, Asada C, Nakamura Y (2004) Methane production from steam-exploded bamboo. J Biosci Bioeng 97:426–428. https://doi.org/10.1016/S1389-1723(04)70231-5

    Article  CAS  PubMed  Google Scholar 

  47. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–132. https://doi.org/10.1016/j.biombioe.2012.09.014

    Article  CAS  Google Scholar 

  48. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  49. Ribeiro FR, Passos F, Gurgel LVA, Baêta BEL, de Aquino SF (2017) Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Sci Total Environ 584–585:1108–1113. https://doi.org/10.1016/j.scitotenv.2017.01.170

    Article  CAS  PubMed  Google Scholar 

  50. Haandel A, Lettinga G (1994) Anaerobic sewage treatment: a practical guide for regions with a hot climate.  John Wiley & Sons, Chichester UK

  51. Niladevi KN, Sukumaran RK, Jacob N, Anisha GS, Prema P (2009) Optimization of laccase production from a novel strain—streptomyces psammoticus using response surface methodology. Microbiol Res 164:105–113. https://doi.org/10.1016/j.micres.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  52. Mizuno O, Li MYY, Noike MT (1998) The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic dgiestion. Water Res 32:1626–1634

    Article  CAS  Google Scholar 

  53. Weijma J, Gubbels F, Hulshoff Pol LW, Stams AJM, Lens P, Lettinga G (2002) Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci Technol 45:75–80

    Article  CAS  Google Scholar 

  54. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  CAS  Google Scholar 

  55. Fernandez-Cegri V, De la Rubia MA, Raposo F, Borja R (2012) Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresour Technol 123:424–429. https://doi.org/10.1016/j.biortech.2012.07.111

    Article  CAS  PubMed  Google Scholar 

  56. O-Thong S, Boe K, Angelidaki I (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654. https://doi.org/10.1016/j.apenergy.2011.12.092

    Article  CAS  Google Scholar 

  57. Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140. https://doi.org/10.1016/j.apenergy.2012.01.027

    Article  CAS  Google Scholar 

  58. Zhang Q, Tang L, Zhang J, Mao Z, Jiang L (2011) Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues. Bioresour Technol 102:3958–3965. https://doi.org/10.1016/j.biortech.2010.12.031

    Article  CAS  PubMed  Google Scholar 

  59. Barakat A, Monlau F, Steyer J-P, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104:90–99. https://doi.org/10.1016/j.biortech.2011.10.060

    Article  CAS  PubMed  Google Scholar 

  60. Chen Q, Chen K, Wang K, Ma J, Yang H, Chen J (2018) The effects of time and temperature in hydrothermal pretreatment on the enzymatic efficiency of wheat straw. BioResources 13:5193-5203

  61. Ksiazek M, Karim AY, Bryzek D, Enghild JJ, Thøgersen IB, Koziel J, Potempa J (2015) Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia. Biol Chem 396:261–275. https://doi.org/10.1515/hsz-2014-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lawrence KA, Harris TM, Salter SJ, Hall RW, Smith-Vaughan HC, Chang AB, Marsh RL (2019) Method for culturing Candidatus Ornithobacterium hominis. J Microbiol Methods 159:157–160. https://doi.org/10.1016/j.mimet.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  63. Seruga P, Krzywonos M, Paluszak Z, Urbanowska A, Pawlak-Kruczek H, Niedźwiecki Ł, Pińkowska H (2020) Pathogen reduction potential in anaerobic digestion of organic fraction of municipal solid waste and food waste. Molecules 25. https://doi.org/10.3390/molecules25020275

  64. Bernardet J, Bowman J (2015) Flavobacterium. Bergey's Manual of Systematics of Archaea and Bacteria 1-75. https://doi.org/10.1002/9781118960608.gbm00312

  65. Koga S, Ogawa J, Choi Y, Shimizu S (1999) Novel bacterial peroxidase without catalase activity from Flavobacterium meningosepticum: purification and characterization. Biochim Biophys Acta 1435:117–126

    Article  CAS  Google Scholar 

  66. Kato S, Chino K, Kamimura N, Masai E, Yumoto I, Kamagata Y (2015) Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep. https://doi.org/10.1038/srep14295

  67. Fowler SJ, Gutierrez-Zamora M-LL, Manefield M, Gieg LM (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 89:625–636. https://doi.org/10.1111/1574-6941.12364

    Article  CAS  PubMed  Google Scholar 

  68. Kuppardt A, Kleinsteuber S, Vogt C, Lüders T, Harms H, Chatzinotas A (2014) Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microb Ecol 68:222–234. https://doi.org/10.1007/s00248-014-0403-8

    Article  CAS  PubMed  Google Scholar 

  69. Pobeheim H, Munk B, Müller H, Berg G, Guebitz GM (2010) Characterization of an anaerobic population digesting a model substrate for maize in the presence of trace metals. Chemosphere 80:829–836. https://doi.org/10.1016/j.chemosphere.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  70. Anderson K, Sallis P, Uyanik S (2003) 24 - Anaerobic treatment processes. In: Handbook of Water and Wastewater Microbiology. Academic Press, London, pp 391–426

    Chapter  Google Scholar 

  71. Delforno TP, Lacerda Júnior GV, Noronha MF et al (2017) Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiologyopen 6. https://doi.org/10.1002/mbo3.443

  72. Del Nery V, Pozzi E, Damianovic M, Domingues M, Zaiat M (2008) Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresour Technol 99:2018-2024. https://doi.org/10.1016/j.biortech.2007.03.019

  73. Senés-Guerrero C, Colón-Contreras FA, Reynoso-Lobo JF, Tinoco-Pérez B, Siller-Cepeda JH, Pacheco A (2019) Biogas-producing microbial composition of an anaerobic digester and associated bovine residues. Microbiologyopen 8. https://doi.org/10.1002/mbo3.854

  74. Bonnin AS, Boone DR (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, et al (eds) The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer, Singapore

  75. Tabatabaei M, Rahim RA, Abdullah N, Wright ADG, Shirai Y, Sakai K, Sulaiman A, Hassan MA (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45:1214–1225. https://doi.org/10.1016/j.procbio.2010.05.017

    Article  CAS  Google Scholar 

  76. Boone D (2015) Methanobacterium. Bergey's Manual of Systematics of Archaea and Bacteria 1-8. https://doi.org/10.1002/9781118960608.gbm00495

  77. Vítězová M, Kohoutová A, Vítěz T, Hanišáková N, Kushkevych I (2020) Methanogenic microorganisms in industrial wastewater anaerobic treatment. Processes 8:1546. https://doi.org/10.3390/pr8121546

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministry of Education, Brazil, under the grant ID 23699920852.

Author information

Authors and Affiliations

Authors

Contributions

FA, ELS, and MBAV conceived and designed the study. FA conducted the experiments and wrote the manuscript. VS helped in conducting BMP experiments. IKS helped in molecular biology experiments. MBAV, IKS, and JS proofread the manuscript. All authors provided feedback on the manuscript.

Corresponding authors

Correspondence to Fiaz Ahmad or Maria Bernadete Amancio Varesche.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not Applicable

Availability of Data and Material

All data is available on request.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Silva, V., Sakamoto, I.K. et al. Bioprospecting Sulfuric Acid Assisted Hydrothermal Pretreatment of Sugarcane Bagasse and Microbial Community Structure for Methane Production. Bioenerg. Res. 15, 631–649 (2022). https://doi.org/10.1007/s12155-021-10268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10268-2

Keywords

Navigation