Skip to main content

Advertisement

Log in

Use of Lignocellulosic Residue from Second-Generation Ethanol Production to Enhance Methane Production Through Co-digestion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This is a pioneer study evaluating the methane (CH4) production potential from residues of integrated first (vinasse and filter cake) and second (deacetylation pretreatment liquor from straw) generation (1G2G) sugarcane biorefinery, providing a fully chemical characterization of them and their relation with the anaerobic digestion (AD) process. Small-scale assays provided fundamentals for basing the co-digestion optimization by assessing the optimal co-substrates synergistic conditions. Biochemical methane potential (BMP) tests showed co-digestion enhanced CH4 yield of isolated substrates, reaching up to 605 NmLCH4 gVS−1. The association of vinasse and deacetylation liquor as co-substrates increased the BMP by ~ 38% mostly by nutritionally benefiting the methanogenic activity. The kinetic analysis confirmed that the deacetylation liquor was the co-substrate responsible for improving the CH4 production in the co-digestion systems due to the highest CH4 conversion rate. The alkaline characteristic of the liquor (pH ~ 12) also prevented alkalizing from being added to the co-digestion, an input that normally makes the process economically unfeasible to implement on an industrial scale due to the large quantities required for buffering the reactor. The filter cake had the lowest BMP (262 NmLCH4 gVS−1) and digestibility (≤ 40%), further limited by the required stirring to improve the mass transfer of biochemical reactions. The present study drives towards the more sustainable use of vinasse, the most voluminous waste from the sugarcane industry, and lignin-rich residues derived from pretreatment alkaline methods, aiming at an energy-efficient utilization, by at least 16% when compared to the traditional vinasse AD. The experimental and modeling elements from this work indicated the lignin-rich liquor is the main responsible for putting the co-digestion as a disruptive technological arrangement within the 1G2G sugarcane biorefineries, reinforcing the biogas production as the hub of the bioeconomy in the agroindustrial sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Parsaee M, Kiani Deh Kiani M, Karimi K (2019) A review of biogas production from sugarcane vinasse. Biomass Bioenerg 122:117–125. https://doi.org/10.1016/j.biombioe.2019.01.034

    Article  CAS  Google Scholar 

  2. Moraes BS, Triolo JM, Lecona VP et al (2015) Biogas production within the bioethanol production chain: use of co-substrates for anaerobic digestion of sugar beet vinasse. Bioresour Technol 190:227–234. https://doi.org/10.1016/j.biortech.2015.04.089

    Article  CAS  PubMed  Google Scholar 

  3. Janke L, Leite A, Nikolausz M et al (2015) Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int J Mol Sci 16:20685–20703. https://doi.org/10.3390/ijms160920685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895. https://doi.org/10.1016/j.biortech.2011.05.081

    Article  CAS  PubMed  Google Scholar 

  5. Nakanishi SC, Soares LB, Biazi LE et al (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357

    Article  CAS  PubMed  Google Scholar 

  6. Adarme OFH, Baêta BEL, Filho JBG et al (2019) Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Bioresour Technol 287:121443. https://doi.org/10.1016/j.biortech.2019.121443

    Article  CAS  PubMed  Google Scholar 

  7. DjalmaNunesFerrazJúnior A, Koyama MH, de Araújo Júnior MM, Zaiat MM (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252. https://doi.org/10.1016/j.renene.2015.11.064

    Article  CAS  Google Scholar 

  8. Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sustain Energy Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023

    Article  CAS  Google Scholar 

  9. Fuess LT, Kiyuna LSM, Ferraz ADN et al (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189:480–491. https://doi.org/10.1016/j.apenergy.2016.12.071

    Article  CAS  Google Scholar 

  10. Menandro LMS, Cantarella H, Franco HCJ et al (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioprod Biorefining 11:488–504. https://doi.org/10.1002/bbb.1760

    Article  CAS  Google Scholar 

  11. Khaire KC, Moholkar VS, Goyal A (2021) Bioconversion of sugarcane tops to bioethanol and other value added products: an overview. Mater Sci Energy Technol 4:54–68. https://doi.org/10.1016/j.mset.2020.12.004

    Article  CAS  Google Scholar 

  12. Brenelli LB, Figueiredo FL, Damasio A, et al (2020) An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: from lab to pilot scale. Bioresour Technol 123637. https://doi.org/10.1016/j.biortech.2020.123637

  13. Janke L, Leite A, Batista K et al (2016) Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: effects of urea supplementation and sodium hydroxide pretreatment. Bioresour Technol 199:235–244. https://doi.org/10.1016/j.biortech.2015.07.117

    Article  CAS  PubMed  Google Scholar 

  14. Wongarmat W, Reungsang A, Sittijunda S, Chu CY (2021) Anaerobic co-digestion of biogas effluent and sugarcane filter cake for methane production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01305-3

    Article  Google Scholar 

  15. Tellechea FRF, Martins MA, da Silva AA et al (2016) Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel. Environ Sci Pollut Res 23:18027–18033. https://doi.org/10.1007/s11356-016-6965-x

    Article  CAS  Google Scholar 

  16. Hernández-Pérez AF, de Arruda PV, Felipe M das G de A (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47:489–496. https://doi.org/10.1016/j.bjm.2016.01.019

  17. Hagos K, Zong J, Li D, et al (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev

  18. Janke L, Leite AF, Nikolausz M et al (2016) Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Manag 48:199–208. https://doi.org/10.1016/j.wasman.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  19. Raposo F, Fernández-Cegrí V, de la Rubia MA et al (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098. https://doi.org/10.1002/jctb.2622

    Article  CAS  Google Scholar 

  20. Hobbs SR, Landis AE, Rittmann BE et al (2018) Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag 71:612–617. https://doi.org/10.1016/j.wasman.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  21. Sluiter A, Hames B, Ruiz R, et al (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples, Technical Report NREL/TP-510–42623

  22. Rodriguez-Chiang L, Llorca J, Dahl O (2016) Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresour Technol 218:84–91. https://doi.org/10.1016/j.biortech.2016.06.074

    Article  CAS  PubMed  Google Scholar 

  23. Triolo JM, Pedersen L, Qu H, Sommer SG (2012) Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour Technol 125:226–232. https://doi.org/10.1016/j.biortech.2012.08.079

    Article  CAS  PubMed  Google Scholar 

  24. VDI 4630 (2006) Fermentation of organic materials. Characterization of the substrate, sampling, collection of material data, fermentation tests

  25. Boušková A, Dohányos M, Schmidt JE, Angelidaki I (2005) Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Res 39:1481–1488. https://doi.org/10.1016/j.watres.2004.12.042

    Article  CAS  PubMed  Google Scholar 

  26. Filer J, Ding HH, Chang S (2019) Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 11:29. https://doi.org/10.3390/w11050921

    Article  CAS  Google Scholar 

  27. Mockaitis G, Bruant G, Guiot SR et al (2020) Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy 145:1388–1398. https://doi.org/10.1016/j.renene.2019.06.134

    Article  CAS  Google Scholar 

  28. APHA, AWWA W (2012) Standard methods for the examination of water and wastewater, twenty-sec. Washington, DC

  29. Sluiter JB, Chum H, Gomes AC et al (2016) Evaluation of Brazilian sugarcane bagasse characterization: an interlaboratory comparison study. J AOAC Int 99:579–585. https://doi.org/10.5740/jaoacint.15-0063

    Article  CAS  Google Scholar 

  30. Janke L, Weinrich S, Leite AF et al (2017) Optimization of semi-continuous anaerobic digestion of sugarcane straw co-digested with filter cake: effects of macronutrients supplementation on conversion kinetics. Bioresour Technol 245:35–43. https://doi.org/10.1016/j.biortech.2017.08.084

    Article  CAS  PubMed  Google Scholar 

  31. Friehe J, Weiland P, Schattauer (2010) Fundamentals of anaerobic digestion In: FNR (Fachagentur Nachwachsende Rohstoffe e.V.) (Ed) Guide to Biogas—From Production to Use. Germany: FNR, pp 21–31

  32. Tan L, Zhong J, Jin YL et al (2020) Production of bioethanol from unwashed-pretreated rapeseed straw at high solid loading. Bioresour Technol 303:122949. https://doi.org/10.1016/j.biortech.2020.122949

    Article  CAS  PubMed  Google Scholar 

  33. Junqueira TL, Moraes BS, Gouveia VLR, et al (2015) Use of VSB to Plan Research Programs and Public Policies. In: Bonomi A, Cavalett O, Pereira da Cunha M, Lima M (eds) Virtual biorefinery: an optimization strategy for renewable carbon valorization. Campinas: Springer, pp 257–282

  34. Pérez-Pimienta JA, Icaza-Herrera JPA, Méndez-Acosta HO et al (2020) Bioderived ionic liquid-based pretreatment enhances methane production from: Agave tequilana bagasse. RSC Adv 10:14025–14032. https://doi.org/10.1039/d0ra01849j

    Article  CAS  Google Scholar 

  35. Kamdem I, Hiligsmann S, Vanderghem C et al (2018) Enhanced biogas production during anaerobic digestion of steam-pretreated lignocellulosic biomass from Williams Cavendish banana plants. Waste and Biomass Valorization 9:175–185. https://doi.org/10.1007/s12649-016-9788-6

    Article  CAS  Google Scholar 

  36. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190. https://doi.org/10.1007/s11157-008-9131-1

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2009.01.007

    Article  Google Scholar 

  38. Menon A, Wang JY, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manag 59:465–475. https://doi.org/10.1016/j.wasman.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  39. Ahn J-H, Do TH, Kim SD, Hwang S (2006) The effect of calcium on the anaerobic digestion treating swine wastewater. Biochem Eng J 30:33–38. https://doi.org/10.1016/j.bej.2006.01.014

    Article  CAS  Google Scholar 

  40. Romero-Güiza MS, Mata-Alvarez J, Chimenos JM, Astals S (2016) The effect of magnesium as activator and inhibitor of anaerobic digestion. Waste Manag 56:137–142. https://doi.org/10.1016/j.wasman.2016.06.037

    Article  CAS  PubMed  Google Scholar 

  41. Koster IW, Rinzema A, de Vegt AL, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res 20:1561–1567. https://doi.org/10.1016/0043-1354(86)90121-1

    Article  CAS  Google Scholar 

  42. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  43. Issah A, Kabera T, Kemausuor F (2020) Biomass and bioenergy biogas optimisation processes and effluent quality : a review. Biomass Bioenerg 133:105449. https://doi.org/10.1016/j.biombioe.2019.105449

    Article  CAS  Google Scholar 

  44. Bhattacharya SK, Uberoi V, Madura RL, Haghighi-Podeh MR (1995) Effect of cobalt on methanogenesis. Environ Technol 16:271–278. https://doi.org/10.1080/09593331608616269

    Article  CAS  Google Scholar 

  45. Zieliński M, Kisielewska M, Dębowski M, Elbruda K (2019) Effects of nutrients supplementation on enhanced biogas production from maize silage and cattle slurry mixture. Water Air Soil Pollut 230. https://doi.org/10.1007/s11270-019-4162-5

  46. Zhang J, Zou W, Li Y et al (2015) Plant science silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in. Plant Sci 239:84–91. https://doi.org/10.1016/j.plantsci.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  47. Rasi S, Seppälä M, Rintala J (2013) Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays. Energy 52:137–142. https://doi.org/10.1016/j.energy.2013.01.015

    Article  CAS  Google Scholar 

  48. Feijoo G, Soto M, Méndez R, Lema JM (1995) Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena. Enzyme Microb Technol 17:180–188. https://doi.org/10.1016/0141-0229(94)00011-F

    Article  CAS  Google Scholar 

  49. Qiang H, Niu Q, Chi Y, Li Y (2013) Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chem Eng J 222:330–336. https://doi.org/10.1016/j.cej.2013.02.076

    Article  CAS  Google Scholar 

  50. Holliger C, Alves M, Andrade D et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336

    Article  CAS  PubMed  Google Scholar 

  51. Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94. https://doi.org/10.1016/j.bej.2004.02.005

    Article  CAS  Google Scholar 

  52. Rabelo SC, Andrade RR, Maciel Filho R, Costa AC (2014) Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel 136:349–357. https://doi.org/10.1016/j.fuel.2014.07.033

    Article  CAS  Google Scholar 

  53. Tramontina R, Brenelli LB, Sousa A et al (2020) Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme Microb Technol 135:109490. https://doi.org/10.1016/j.enzmictec.2019.109490

    Article  CAS  PubMed  Google Scholar 

  54. Khan MU, Ahring BK (2019) Lignin degradation under anaerobic digestion: Influence of lignin modifications - a review. Biomass Bioenerg 128. https://doi.org/10.1016/j.biombioe.2019.105325

  55. Mulat DG, Horn SJ (2018) Chapter 14: Biogas production from lignin via anaerobic digestion. RSC Energy Environ Ser 2018-Jan:391–412. https://doi.org/10.1039/9781788010351-00391

  56. Gonzalez-Gil G, Seghezzo L, Lettinga G et al (2001) Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnol Bioeng 73:125–134. https://doi.org/10.1002/bit.1044

    Article  CAS  PubMed  Google Scholar 

  57. Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57:359–367. https://doi.org/10.1016/j.energy.2013.05.028

    Article  CAS  Google Scholar 

  58. Ganesh Kumar A, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97:1521–1528. https://doi.org/10.1016/j.biortech.2005.06.015

    Article  CAS  PubMed  Google Scholar 

  59. Barakat A, Monlau F, Steyer JP, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104:90–99. https://doi.org/10.1016/j.biortech.2011.10.060

    Article  CAS  PubMed  Google Scholar 

  60. Kim JY, Park J, Hwang H et al (2015) Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. J Anal Appl Pyrolysis 113:99–106. https://doi.org/10.1016/j.jaap.2014.11.011

    Article  CAS  Google Scholar 

  61. Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755. https://doi.org/10.1002/jctb.630

    Article  CAS  Google Scholar 

  62. Gu Y, Chen X, Liu Z et al (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol 158:149–155. https://doi.org/10.1016/j.biortech.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  63. Quintero M, Castro L, Ortiz C et al (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour Technol 108:8–13. https://doi.org/10.1016/j.biortech.2011.12.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by São Paulo Research Foundation — FAPESP contract numbers 2018/09893-1 to MPCV,2016/16438-3 to BSM, 2017/15477-8 to LBB, 2015/50612-8 (FAPESP-BBSRC Thematic Project). The authors gratefully acknowledge the support of the Laboratory of Environment and Sanitation (LMAS) at the School of Agricultural Engineering (FEAGRI/UNICAMP), the National Laboratory of Biorenewables (LNBR/CNPEM), and the Interdisciplinary Center of Energy Planning (NIPE/UNICAMP).

Author information

Authors and Affiliations

Authors

Contributions

Maria Paula C. Volpi: Conceptualization, methodology, data curation, and writing — original draft preparation.

Livia B. Brenelli: Methodology, data curation, and writing — original draft preparation.

Gustavo Mockaitis: Methodology, data curation, and writing — original draft preparation.

Sarita C. Rabelo: Methodology, data curation, and writing — original draft preparation.

Telma T. Franco: Project administration and funding acquisition.

Bruna S. Moraes: Conceptualization, formal analysis, writing — review and editing, and supervision.

Corresponding author

Correspondence to Maria Paula. C. Volpi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 KB)

Supplementary file2 (DOCX 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpi, M.P.C., Brenelli, L.B., Mockaitis, G. et al. Use of Lignocellulosic Residue from Second-Generation Ethanol Production to Enhance Methane Production Through Co-digestion. Bioenerg. Res. 15, 602–616 (2022). https://doi.org/10.1007/s12155-021-10293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10293-1

Keywords

Navigation