Skip to main content

Advertisement

Log in

Probing the Biophysical Properties of Primary Breast Tumor-Derived Fibroblasts

  • Original Paper
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

As cancer progresses, cells must adapt to a new and stiffer environment, which can ultimately alter how normal cells within the tumor behave. In turn, these cells are known to further aid tumor progression. Therefore, there is potentially a unique avenue to better understand metastatic potential through single-cell biophysical assays performed on patient-derived cells. Here, we perform biophysical characterization of primary human fibroblastic cells obtained from mammary carcinoma and normal contralateral tissue. Through a series of tissue dissociation, differential centrifugation and trypsinization steps, we isolate an adherent fibroblastic population viable for biomechanical testing. 2D TFM and 3D migration measurements in a collagen matrix show that fibroblasts obtained from patient tumors generate more traction forces and display improved migration potential than their counterparts from normal tissue. Moreover, through the use of an embedded spheroid model, we confirmed the extracellular matrix remodeling behavior of primary cells isolated from carcinoma. Overall, correlating biophysical characterization of normal- and carcinoma-derived samples from individual patients along with patient outcome may become a powerful approach to further our comprehension of metastasis and ultimately design drug targets on a patient-specific basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Agus, D. B., J. F. Alexander, W. Arap, et al. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3:1449, 2013.

    Article  Google Scholar 

  2. Bordeleau, F., T. A. Alcoser, and C. A. Reinhart-King. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am. J. Physiol. Cell Physiol. 306(2):C110–C120, 2014.

    Article  Google Scholar 

  3. Bourhis, X. D.-L., Y. Berthois, G. Millot, et al. Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int. J. Cancer 71(1):42–48, 1997.

    Article  Google Scholar 

  4. Bremnes, R. M., T. Donnem, S. Al-Saad, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 6(1):209–217, 2011.

    Article  Google Scholar 

  5. Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9(2):108–122, 2009.

    Article  Google Scholar 

  6. Carey, S. P., T. M. D’Alfonso, S. J. Shin, and C. A. Reinhart-King. Mechanobiology of tumor invasion: engineering meets oncology. Crit. Rev. Oncol. Hematol. 83(2):170–183, 2012.

    Article  Google Scholar 

  7. Carey, S. P., C. M. Kraning-Rush, R. M. Williams, and C. A. Reinhart-King. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33(16):4157–4165, 2012.

    Article  Google Scholar 

  8. Carey, S. P., A. Starchenko, A. L. McGregor, and C. A. Reinhart-King. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30(5):615–630, 2013.

    Article  Google Scholar 

  9. Cukierman, E., and D. E. Bassi. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin. Cancer Biol. 20(3):139–145, 2010.

    Article  Google Scholar 

  10. De Wever, O., P. Demetter, M. Mareel, and M. Bracke. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123(10):2229–2238, 2008.

    Article  Google Scholar 

  11. Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4):2307–2316, 1999.

    Article  Google Scholar 

  12. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  Google Scholar 

  13. Dumont, N., B. Liu, R. A. Defilippis, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15(3):249–262, 2013.

    Google Scholar 

  14. Eriksson, J. E., T. Dechat, B. Grin, et al. Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119(7):1763–1771, 2009.

    Article  Google Scholar 

  15. Gaggioli, C., S. Hooper, C. Hidalgo-Carcedo, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9(12):1392–1400, 2007.

    Article  Google Scholar 

  16. Gilbert, S., A. Loranger, N. Daigle, and N. Marceau. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154(4):763–773, 2001.

    Article  Google Scholar 

  17. Goetz, J. G., S. Minguet, I. Navarro-Lerida, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163, 2011.

    Article  Google Scholar 

  18. Kawashiri, S., A. Tanaka, N. Noguchi, et al. Significance of stromal desmoplasia and myofibroblast appearance at the invasive front in squamous cell carcinoma of the oral cavity. Head Neck 31(10):1346–1353, 2009.

    Article  Google Scholar 

  19. Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572, 2012.

    Article  Google Scholar 

  20. Kraning-Rush, C. M., S. P. Carey, J. P. Califano, B. N. Smith, and C. A. Reinhart-King. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol. 8(1):015009, 2011.

    Article  Google Scholar 

  21. Levental, K. R., H. Yu, L. Kass, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906, 2009.

    Article  Google Scholar 

  22. Lopez, J. I., I. Kang, W. K. You, D. M. McDonald, and V. M. Weaver. In situ force mapping of mammary gland transformation. Integr. Biol. (Camb) 3(9):910–921, 2011.

    Article  Google Scholar 

  23. Madar, S., I. Goldstein, and V. Rotter. ‘Cancer associated fibroblasts’—more than meets the eye. Trends Mol. Med. 19(8):447–453, 2013.

    Article  Google Scholar 

  24. Mao, Y., E. T. Keller, D. H. Garfield, K. Shen, and J. Wang. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32(1–2):303–315, 2013.

    Article  Google Scholar 

  25. Marsden, C. G., M. J. Wright, R. Pochampally, and B. G. Rowan. Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol. Biol. 590:363–375, 2009.

    Article  Google Scholar 

  26. Orimo, A., P. B. Gupta, D. C. Sgroi, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348, 2005.

    Article  Google Scholar 

  27. Paszek, M. J., N. Zahir, K. R. Johnson, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.

    Article  Google Scholar 

  28. Plodinec, M., M. Loparic, C. A. Monnier, et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7(11):757–765, 2012.

    Article  Google Scholar 

  29. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(1):38, 2006.

    Article  Google Scholar 

  30. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95(11):5374–5384, 2008.

    Article  Google Scholar 

  31. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2014; http://www.R-project.org/.

  32. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1):676–689, 2005.

    Article  Google Scholar 

  33. Ronnov-Jessen, L., O. W. Petersen, and M. J. Bissell. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76(1):69–125, 1996.

    Google Scholar 

  34. Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1):a003228, 2011.

    Article  Google Scholar 

  35. Shieh, A. C., H. A. Rozansky, B. Hinz, and M. A. Swartz. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71(3):790–800, 2011.

    Article  Google Scholar 

  36. Shvetsova, E. V., O. S. Rogovaya, S. B. Tkachenko, I. V. Kiselev, A. V. Vasil’ev, and V. V. Terskikh. Contractile capacity of fibroblasts from different sources in the model of living skin equivalent. Biol. Bull. Russ. Acad. Sci. 35(2):146–150, 2008.

    Article  Google Scholar 

  37. Speirs, V., A. R. Green, D. S. Walton, et al. Short-term primary culture of epithelial cells derived from human breast tumours. Br. J. Cancer 78(11):1421–1429, 1998.

    Article  Google Scholar 

  38. Wolf, K., M. Te Lindert, M. Krause, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201(7):1069–1084, 2013.

    Article  Google Scholar 

  39. Wolf, K., Y. I. Wu, Y. Liu, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9(8):893–904, 2007.

    Article  Google Scholar 

  40. Wood, S. N. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman & Hall/CRC, 2006.

    Google Scholar 

  41. Yamaguchi, H., N. Yoshida, M. Takanashi, et al. Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS One 9(1):e85485, 2014.

    Article  Google Scholar 

  42. Zhang, W., L. M. Matrisian, K. Holmbeck, C. C. Vick, and E. L. Rosenthal. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52, 2006.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cornell Center on the Microenvironment & Metastasis through Award Number U54CA143876 from the National Cancer Institute, a National Science Foundation – National Institute of Health Physical and Engineering Sciences in Oncology (PESO) award (Award Number 1233827) and an NSF CAREER award to C. A. R. This work was also supported by National Science Foundation Graduate Research Fellowships to S. P. C. and M. C. L.

Conflict of interest

T. A. A., F. B., S. P. C., M. C. L., D. R. K., S. S., S. V., S. J. S., and C. A. R declare that they have no conflicts of interest.

Ethical Standards

All experiments using samples from human subjects were carried out in accordance with Weill Cornell IRB guidelines. Human tissues were de-identified. No animals were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Reinhart-King.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcoser, T.A., Bordeleau, F., Carey, S.P. et al. Probing the Biophysical Properties of Primary Breast Tumor-Derived Fibroblasts. Cel. Mol. Bioeng. 8, 76–85 (2015). https://doi.org/10.1007/s12195-014-0360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0360-9

Keywords

Navigation