Skip to main content
Log in

Examination of Hydrogels and Mesenchymal Stem Cell Sources for Bioprinting of Artificial Osteogenic Tissues

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Mesenchymal stem cells (MSCs) represent a very important cell source in the field of regenerative medicine and for bone and cartilage tissue engineering applications. Three-dimensional (3D) bioprinting has the potential to improve the classical tissue engineering concept as this technique allows the printing of cells with high spatial control of cell allocation within a 3D construct. In this study, we systematically compared different hydrogel blends for 3D bioprinting of MSCs by testing their cytocompatibility, ability to support osteogenic differentiation and their mechanical properties. In addition, we compared four different MSC populations isolated from different human tissues for their osteogenic differentiation capacity in combination with different hydrogels. The aim of this study was to identify the best MSC source and the most suitable hydrogel blend for extrusion-based bioprinting of 3D large-scaled osteogenic constructs.

Materials and Methods

MSCs were isolated from different tissues (umbilical cord, adipose tissue, bone marrow). MSCs were seed onto or into different hydrogels and analyzed for cell viability, proliferation and osteogenic differentiation. In addition, viscoelastic properties of the hydrogels were determined. MSC-containing cubes with the size of 1 cm3 were printed by means of 3D extrusion-based bioprinting and analyzed by (immuno)histology for cell survival and production of a calcified extracellular matrix.

Results

Adipose tissue derived MSCs (ASCs) showed the highest osteogenic differentiation potential. A complex hydrogel blend consisting of fibrin, gelatin, hyaluronic acid, glycerol (F/G/H/Gl), tuned with hydroxyapatite, showed the best viscoelastic properties in combination with an excellent biocompatibility towards ASCs. This cell/hydrogel combination was used to bioprint 3D cubes. The cubes showed good mechanical stability and the printed ASCs were viable and able to calcify the hydrogel after bioprinting.

Conclusions

The combination of the HA-tuned F/G/H/Gl hydrogel blend along with ASCs can be considered as a very promising bioink for 3D bioprinting of artificial bone tissue equivalents for prospective applications in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alamdari, O. G., E. Seyedjafari, M. Soleimani, and N. Ghaemi. Micropatterning of ECM proteins on glass substrates to regulate cell attachment and proliferation. Avicenna J. Med. Biotechnol. 5(4):234–240, 2013.

    Google Scholar 

  2. Amati, E., S. Sella, O. Perbellini, A. Alghisi, M. Bernardi, K. Chieregato, C. Lievore, D. Peserico, M. Rigno, A. Zilio, M. Ruggeri, F. Rodeghiero, and G. Astori. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res. Ther. 8(1):14, 2017.

    Article  Google Scholar 

  3. Beeravolu, N., C. McKee, A. Alamri, S. Mikhael, C. Brown, M. Perez-Cruet, and G. R. Chaudhry. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J. Vis. Exp. 122:e55224, 2017.

    Google Scholar 

  4. Benning, L., L. Gutzweiler, K. Tröndle, J. Riba, R. Zengerle, P. Koltay, S. Zimmermann, G. B. Stark, and G. Finkenzeller. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J. Biomed. Mater. Res. A 105(12):3231–3241, 2017.

    Article  Google Scholar 

  5. Blum, J. S., R. H. Li, A. G. Mikos, and M. A. Barry. An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. J. Cell. Biochem. 80(4):532–537, 2001.

    Article  Google Scholar 

  6. Böcker, W., Z. Yin, I. Drosse, F. Haasters, O. Rossmann, M. Wierer, C. Popov, M. Locher, W. Mutschler, D. Docheva, and M. Schieker. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J. Cell. Mol. Med. 12(4):1347–1359, 2008.

    Article  Google Scholar 

  7. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317, 2006.

    Article  Google Scholar 

  8. Duarte Campos, D. F., A. Blaeser, K. Buellesbach, K. S. Sen, W. Xun, W. Tillmann, and H. Fischer. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv. Healthc. Mater. 5(11):1336–1345, 2016.

    Article  Google Scholar 

  9. Dumbleton, J., P. Agarwal, H. Huang, N. Hogrebe, R. Han, K. J. Gooch, and X. He. The effect of RGD peptide on 2D and miniaturized 3D culture of HEPM cells, MSCs, and ADSCs with alginate hydrogel. Cell. Mol. Bioeng. 9(2):277–288, 2016.

    Article  Google Scholar 

  10. Engebretson, B., Z. R. Mussett, and V. I. Sikavitsas. Tenocytic extract and mechanical stimulation in a tissue-engineered tendon construct increases cellular proliferation and ECM deposition. Biotechnol. J. 12(3):1600595, 2017.

    Article  Google Scholar 

  11. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  Google Scholar 

  12. Hu, L., J. Hu, J. Zhao, J. Liu, W. Ouyang, C. Yang, N. Gong, L. Du, A. Khanal, and L. Chen. Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. BioMed Res. Int. 2013:438243, 2013.

    Google Scholar 

  13. Hung, B. P., D. L. Hutton, K. L. Kozielski, C. J. Bishop, B. Naved, J. J. Green, A. I. Caplan, J. M. Gimble, A. H. Dorafshar, and W. L. Grayson. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells 33(9):2773–2784, 2015.

    Article  Google Scholar 

  14. Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312–319, 2016.

    Article  Google Scholar 

  15. Kolesky, D. B., K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 113(12):3179–3184, 2016.

    Article  Google Scholar 

  16. Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49(3):328–337, 2000.

    Article  Google Scholar 

  17. Lecoeur, L., and J. P. Ouhayoun. In vitro induction of osteogenic differentiation from non-osteogenic mesenchymal cells. Biomaterials 18(14):989–993, 1997.

    Article  Google Scholar 

  18. Li, C.-Y., X.-Y. Wu, J.-B. Tong, X.-X. Yang, J.-L. Zhao, Q.-F. Zheng, G.-B. Zhao, and Z.-J. Ma. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 6:55, 2015.

    Article  Google Scholar 

  19. Mehlhorn, A. T., H. Schmal, S. Kaiser, G. Lepski, G. Finkenzeller, G. B. Stark, and N. P. Südkamp. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng. 12(6):1393–1403, 2006.

    Article  Google Scholar 

  20. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.

    Article  Google Scholar 

  21. Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101(1):272–284, 2013.

    Article  Google Scholar 

  22. Olivares-Navarrete, R., E. M. Lee, K. Smith, S. L. Hyzy, M. Doroudi, J. K. Williams, K. Gall, B. D. Boyan, and Z. Schwartz. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS ONE 12(1):e0170312, 2017.

    Article  Google Scholar 

  23. Oryan, A., A. Kamali, A. Moshiri, and M. Baghaban Eslaminejad. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204(2):59–83, 2017.

    Article  Google Scholar 

  24. Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Bio-med. Eng. 60(3):691–699, 2013.

    Article  Google Scholar 

  25. Pavlin, D., S. B. Dove, R. Zadro, and J. Gluhak-Heinrich. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif. Tissue Int. 67(2):163–172, 2000.

    Article  Google Scholar 

  26. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.

    Article  Google Scholar 

  27. Rao, R. R., A. W. Peterson, and J. P. Stegemann. Osteogenic differentiation of adipose-derived and marrow-derived mesenchymal stem cells in modular protein/ceramic microbeads. J. Biomed. Mater. Res. A 101(6):1531–1538, 2013.

    Article  Google Scholar 

  28. Schneider, A. K., G. Cama, M. Ghuman, F. J. Hughes, and B. Gharibi. Sprouty 2, an early response gene regulator of FosB and mesenchymal stem cell proliferation during mechanical loading and osteogenic differentiation. J. Cell. Biochem. 118(9):2606–2614, 2017.

    Article  Google Scholar 

  29. Strassburg, S., N. Torio-Padron, G. Finkenzeller, A. Frankenschmidt, and G. B. Stark. Adipose-derived stem cells support lymphangiogenic parameters in vitro. J. Cell. Biochem. 117(11):2620–2629, 2016.

    Article  Google Scholar 

  30. Sunthar, P. Polymer rheology. In: Rheology of Complex Fluids, edited by J. Krishnan, A. Deshpande, and P. Kumar. New York: Springer, 2010.

    MATH  Google Scholar 

  31. Tijore, A., J.-M. Behr, S. A. Irvine, V. Baisane, and S. Venkatraman. Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed. Microdevices 20(2):32, 2018.

    Article  Google Scholar 

  32. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. 76(4):579–592, 1994.

    Article  Google Scholar 

  33. Witt, R., A. Weigand, A. M. Boos, A. Cai, D. Dippold, A. R. Boccaccini, D. W. Schubert, M. Hardt, C. Lange, A. Arkudas, R. E. Horch, and J. P. Beier. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 18(1):15, 2017.

    Article  Google Scholar 

  34. Zajdel, A., M. Kałucka, E. Kokoszka-Mikołaj, and A. Wilczok. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol. 64(2):365–369, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding through the Deutsche Forschungsgemeinschaft (FI 790/10-1 and KO 3910/1-1) and the Bundesministerium für Bildung und Forschung (03VNE1034C and 03VNE1034B). The authors would like to thank Brunhilde Baumer for excellent technical assistance, Matthias Schieker for providing immortalized mesenchymal stem cells and Anja Eisenhardt for critical reading of the manuscript.

Conflict of interest

Maximilian Wehrle, Fritz Koch, Stefan Zimmermann, Peter Koltay, Roland Zengerle, G. Björn Stark, Sandra Strassburg and Günter Finkenzeller declare that they have no conflicts of interest.

Ethical Approval

No human studies and no animal experiments were carried out by the authors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Finkenzeller.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12195_2019_588_MOESM1_ESM.tif

SUPPLEMENT FIGURE S1. Flow cytometric analysis of iMSCs, ASCs, ucMSCs and bmMSCs. All MSC types were positive for CD105, CD90 and CD73 and negative for CD45, CD14 and HLA-DR. Supplementary material 1 (TIFF 370 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrle, M., Koch, F., Zimmermann, S. et al. Examination of Hydrogels and Mesenchymal Stem Cell Sources for Bioprinting of Artificial Osteogenic Tissues. Cel. Mol. Bioeng. 12, 583–597 (2019). https://doi.org/10.1007/s12195-019-00588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00588-x

Keywords

Navigation