Skip to main content

Advertisement

Log in

Re-engineering Antimicrobial Peptides into Oncolytics Targeting Drug-Resistant Ovarian Cancers

  • 2020 CMBE Young Innovators issue
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Bacteria and cancer cells share a common trait—both possess an electronegative surface that distinguishes them from healthy mammalian counterparts. This opens opportunities to repurpose antimicrobial peptides (AMPs), which are cationic amphiphiles that kill bacteria by disrupting their anionic cell envelope, into anticancer peptides (ACPs). To test this assertion, we investigate the mechanisms by which a pathogen-specific AMP, originally designed to kill bacterial Tuberculosis, potentiates the lytic destruction of drug-resistant cancers and synergistically enhances chemotherapeutic potency.

Materials and Methods

De novo peptide design, paired with cellular assays, elucidate structure-activity relationships (SAR) important to ACP potency and specificity. Using the sequence MAD1, microscopy, spectrophotometry and flow cytometry identify the peptide’s anticancer mechanisms, while parallel combinatorial screens define chemotherapeutic synergy in drug-resistant cell lines and patient derived ex vivo tumors.

Results

SAR investigations reveal spatial sequestration of amphiphilic regions increases ACP potency, but at the cost of specificity. Selecting MAD1 as a lead sequence, mechanistic studies identify that the peptide forms pore-like supramolecular assemblies within the plasma and nuclear membranes of cancer cells to potentiate death through lytic and apoptotic mechanisms. This diverse activity enables MAD1 to synergize broadly with chemotherapeutics, displaying remarkable combinatorial efficacy against drug-resistant ovarian carcinoma cells and patient-derived tumor spheroids.

Conclusions

We show that cancer-specific ACPs can be rationally engineered using nature’s AMP toolbox as templates. Selecting the antimicrobial peptide MAD1, we demonstrate the potential of this strategy to open a wealth of synthetic biotherapies that offer new, combinatorial opportunities against drug resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agarwal, R., and S. B. Kaye. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 3:502–516, 2003.

    Google Scholar 

  2. Ahmed, N., and K. Stenvers. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 3:256, 2013.

    Google Scholar 

  3. Aina, O. H., R. Liu, J. L. Sutcliffe, J. Marik, C.-X. Pan, and K. S. Lam. From combinatorial chemistry to cancer-targeting peptides. Mol. Pharm. 4:631–651, 2007.

    Google Scholar 

  4. Al-Benna, S., Y. Shai, F. Jacobsen, and L. Steinstraesser. Oncolytic activities of host defense peptides. Int. J. Mol. Sci. 12:8027–8051, 2011.

    Google Scholar 

  5. Al-Lazikani, B., U. Banerji, and P. Workman. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30:679, 2012.

    Google Scholar 

  6. Andrushchenko, V. V., H. J. Vogel, and E. J. Prenner. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim. Biophys. Acta - Biomembr. 1758:1596–1608, 2006.

    Google Scholar 

  7. Anugraham, M., F. Jacob, S. Nixdorf, A. V. Everest-Dass, V. Heinzelmann-Schwarz, and N. H. Packer. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: Glycan structures reflect gene expression and DNA methylation status. Mol. Cell. Proteomics 13:2213–2232, 2014.

    Google Scholar 

  8. Aronson, M. R., A. W. Simonson, L. M. Orchard, M. Llinás, and S. H. Medina. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater. 80:269–277, 2018.

    Google Scholar 

  9. Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19:325–331, 2008.

    Google Scholar 

  10. Bahar, A. A., and D. Ren. Antimicrobial peptides. Pharmaceuticals 6:1543–1575, 2013.

    Google Scholar 

  11. Chen, W., H. Ding, P. Feng, H. Lin, and K.-C. Chou. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7:16895, 2016.

    Google Scholar 

  12. Cochran, A. G., N. J. Skelton, and M. A. Starovasnik. Tryptophan zippers: stable, monomeric β-hairpins. Proc. Natl. Acad. Sci. 98:5578–5583, 2001.

    Google Scholar 

  13. DeStefano, C. B., and S. V. Liu. Combinatorial immunotherapy and chemotherapy. In: Early Phase Cancer Immunotherapy, edited by S. P. Patel, and R. Kurzrock. Cham: Springer, 2018, pp. 199–218.

    Google Scholar 

  14. Eckstein, N. Platinum resistance in breast and ovarian cancer cell lines. J. Exp. Clin. Cancer Res. 30:91, 2011.

    Google Scholar 

  15. Emelianova, A. A., D. V. Kuzmin, P. V. Panteleev, M. Sorokin, A. A. Buzdin, and T. V. Ovchinnikova. Anticancer activity of the goat antimicrobial peptide ChMAP-28. Front. Pharmacol. 9:1501, 2018.

    Google Scholar 

  16. Felício, M. R., O. N. Silva, S. Gonçalves, N. C. Santos, and O. L. Franco. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 5:5, 2017.

    Google Scholar 

  17. Fuster, M. M., and J. D. Esko. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–542, 2005.

    Google Scholar 

  18. Gajski, G., and V. Garaj-Vrhovac. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36:697–705, 2013.

    Google Scholar 

  19. Gaspar, D., A. S. Veiga, and M. A. R. B. Castanho. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4:294, 2013.

    Google Scholar 

  20. Hou, L., X. Zhao, P. Wang, Q. Ning, M. Meng, and C. Liu. Antitumor activity of antimicrobial peptides containing CisoDGRC in CD13 negative breast cancer cells. PLoS ONE 8:e53491, 2013.

    Google Scholar 

  21. Huang, Y., X. Wang, H. Wang, Y. Liu, and Y. Chen. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther. 10:416–426, 2011.

    Google Scholar 

  22. Ishikawa, K., S. H. Medina, J. P. Schneider, and A. J. S. S. Klar. Glycan alteration imparts cellular resistance to a membrane-lytic anticancer peptide. Cell Chem. Biol. 24:149–158, 2017.

    Google Scholar 

  23. Kim, I.-W., J. H. Lee, Y.-N. Kwon, E.-Y. Yun, S.-H. Nam, M.-Y. Ahn, D.-C. Kang, and J. S. Hwang. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. Int. J. Oncol. 43:622–628, 2013.

    Google Scholar 

  24. Kościuczuk, E. M., P. Lisowski, J. Jarczak, N. Strzałkowska, A. Jóźwik, J. Horbańczuk, J. Krzyżewski, L. Zwierzchowski, and E. Bagnicka. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep. 39:10957–10970, 2012.

    Google Scholar 

  25. Kumar, P., J. N. Kizhakkedathu, and S. K. Straus. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:4, 2018.

    Google Scholar 

  26. Kuroda, K., T. Fukuda, H. Isogai, K. Okumura, M. Krstic-Demonacos, and E. Isogai. Antimicrobial peptide FF/CAP18 induces apoptotic cell death in HCT116 colon cancer cells via changes in the metabolic profile. Int. J. Oncol. 46:1516–1526, 2015.

    Google Scholar 

  27. Lawler, S. E., M.-C. Speranza, C.-F. Cho, and E. A. Chiocca. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3:841–849, 2017.

    Google Scholar 

  28. Manzo, G., M. A. Scorciapino, P. Wadhwani, J. Bürck, N. Pietro Montaldo, M. Pintus, R. Sanna, M. Casu, A. Giuliani, G. Pirri, V. Luca, A. S. Ulrich, and A. C. Rinaldi. Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS ONE 10:1–18, 2015.

    Google Scholar 

  29. Medina, S. H., and J. P. Schneider. Cancer cell surface induced peptide folding allows intracellular translocation of drug. J. Control. Release 209:317–326, 2015.

    Google Scholar 

  30. Przybyło, M., D. Hoja-Lukowicz, A. Lityńska, and P. Laidler. Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines. Cancer Cell Int. 2:6, 2002.

    Google Scholar 

  31. Ramón-García, S., R. Mikut, C. Ng, S. Ruden, R. Volkmer, M. Reischl, K. Hilpert, and C. J. Thompson. Targeting mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother. 57:2295–2303, 2013.

    Google Scholar 

  32. Reißer, S., E. Strandberg, T. Steinbrecher, and A. S. Ulrich. 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys. J. 106:2385–2394, 2014.

    Google Scholar 

  33. Riedl, S., D. Zweytick, and K. Lohner. Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids 164:766–781, 2011.

    Google Scholar 

  34. Rivel, T., C. Ramseyer, and S. Yesylevskyy. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci. Rep. 9:1–14, 2019.

    Google Scholar 

  35. Seo, M.-D., H.-S. Won, J.-H. Kim, T. Mishig-Ochir, and B.-J. Lee. Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286, 2012.

    Google Scholar 

  36. Sharma, B., and S. S. Kanwar. Phosphatidylserine: a cancer cell targeting biomarker. Semin. Cancer Biol. 52:17–25, 2018.

    Google Scholar 

  37. Simonson, A. W., A. Lawanprasert, T. D. P. Goralski, K. C. Keiler, and S. H. Medina. Bioresponsive peptide-polysaccharide nanogels—a versatile delivery system to augment the utility of bioactive cargo. Nanomedicine 17:391–400, 2019.

    Google Scholar 

  38. Simonson, A. W., A. S. Mongia, M. R. Aronson, J. N. Alumasa, D. C. Chan, A. Bolotsky, A. Ebrahimi, E. A. Proctor, K. C. Keiler, and S. H. Medina. Pathogen-specific de novo antimicrobials engineered through membrane porin biomimicry. ChemRxiv 2020. https://doi.org/10.26434/chemrxiv.12267992.v1.

    Article  Google Scholar 

  39. Suarez-Jimenez, G.-M., A. Burgos-Hernandez, and J.-M. Ezquerra-Brauer. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs 10:963–986, 2012.

    Google Scholar 

  40. Tao, P., R. Wang, and L. Lai. Calculating partition coefficients of peptides by the addition method. J. Mol. Model. 5:189–195, 1999.

    Google Scholar 

  41. Teixeira, V., M. J. Feio, and M. Bastos. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51:149–177, 2012.

    Google Scholar 

  42. Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids 2012:967347, 2012.

    Google Scholar 

  43. Tyagi, A., P. Kapoor, R. Kumar, K. Chaudhary, A. Gautam, and G. P. S. Raghava. In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 3:2984, 2013.

    Google Scholar 

  44. Uphoff, C. C., and H. G. Drexler. Detection of mycoplasma contaminations. In: Basic Cell Culture Protocols, edited by C. D. Helgason, and C. L. Miller. Totowa, NJ: Humana Press, 2005, pp. 13–23.

    Google Scholar 

  45. Zhao, J., Y. Huang, D. Liu, and Y. Chen. Two hits are better than one: synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget 6:1769, 2015.

    Google Scholar 

  46. Zheng, L.-H., Y.-J. Wang, J. Sheng, F. Wang, Y. Zheng, X.-K. Lin, and M. Sun. Antitumor peptides from marine organisms. Mar. Drugs 9:1840–1859, 2011.

    Google Scholar 

Download references

Acknowledgments

We thank the laboratory of Dr. Joel Schneider at the National Cancer Institute for providing cancer cell lines. We also thank Dr. Matthew Taylor (Penn State University, College of Medicine, Hershey, PA) for donating the NL20 cell line. We thank the laboratories of Dr. Zissis Chroneos (Penn State University, College of Medicine, Hershey, PA), Dr. Pak Kin Wong (Penn State University, PA), and Dr. Kenneth Keiler (Penn State University, PA) for sharing the bacterial strains employed in these studies. We acknowledge and thank the Penn State Microscopy and Cytometry Facility—University Park, PA for assistance with confocal and electron microscopy. We also acknowledge the Penn State X-Ray Crystallography Facility—University Park, PA for use of the CD spectrophotometer. Funding for this research was provided by the Penn State Institute of Energy and the Environment Human Health and the Environment Seed Grant (S.H.M.), NIH:R00CA194309 (K.M.A.), NIH:F31CA236372 (E.S.D.), Penn State College of Engineering Grant (M.R.A.) and Penn State Graduate Research Fellowship (A.W.S.).

Conflict of interest

Authors Matthew R. Aronson, Erika S. Dahl, Jacob A. Halle, Andrew W. Simonson, Rose A. Gogal, Adam B. Glick, Katherine M. Aird and Scott H. Medina declare they have no conflict of interest.

Research Involving Human Rights

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott H. Medina.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronson, M.R., Dahl, E.S., Halle, J.A. et al. Re-engineering Antimicrobial Peptides into Oncolytics Targeting Drug-Resistant Ovarian Cancers. Cel. Mol. Bioeng. 13, 447–461 (2020). https://doi.org/10.1007/s12195-020-00626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00626-z

Keywords

Navigation