Skip to main content
Log in

Innovative Mobile TMD System for Semi-active Vibration Control of Inclined Sagged Cables

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this study an innovative mobile Tuned Mass Damper (TMD) system is proposed which enables the TMD device to move along the cable and optimize its position. A three dimensional model of an inclined cable with sag is created using OpenSees. A mobile TMD device incorporating a semi-active Magnetorheological (MR) damper is implemented. Nine different control strategies, including six fuzzy strategies as well as a continuous sky-hook, an on-off sky-hook, and a passive-on strategy, are employed for the purpose of vibration mitigation. A locating algorithm is also devised so as to optimize the TMD position. A specific load pattern containing a chirp signal is utilized with the purpose of performing the nonlinear time history analyses. The results investigate the efficiency of different control systems in a comparative manner. The effect of locating algorithm is also examined. The results claim that although the suggested control systems can effectively reduce the displacements of the cable, they are relatively incompetent to make a remarkable reduction in maximum and normed values of the cable tension. The output data certify the significant contribution of LA for promoting the performance of control systems. This algorithm especially influences the reduction of normed values of displacement. In general, the fuzzy control algorithms show a much higher performance compared with the passive-on and sky-hook counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, A., Karoumi, R., and O’Connor, A. (2013). “External damping of stay cables using adaptive and semi-active vibration control.” Proc, ICSBOC, the 8th Int. Cable Supported Bridge Operators’ Conf., Edinburgh, Scotland.

    Google Scholar 

  • Cai, C. S., Wu, W. J., and Shi, X. M. (2006). “Cable vibration reduction with a hung-on TMD system: Theoretical study.” Journal of Vibration and Control, SAGE, Vol. 12, No. 7, pp. 801–814, DOI: 10.1177/1077546306065857.

    Article  MATH  Google Scholar 

  • Caicedo, J. M., Dyke, S. J., Moon, S. J., Bergman, L. A., Turan, G., and Hague, S. (2003). “Phase II benchmark control problem for seismic response of cable-stayed bridges.” Journal of Structural Control, Wiley, Vol. 10, Nos. 3–4, pp. 137–168, DOI: 10.1002/stc.23.

    Article  Google Scholar 

  • Christenson, R. E., Spencer, B. F., and Johnson, E. A. (2001). “Experimental verification of semi-active damping of stay cables.” Proc. of the 2001 American Control Conf., Arlington, Virginia, pp. 5058–5063.

    Google Scholar 

  • Cu, V. H., Han, B., and Pham, D. H. (2017). “Tuned mass-high damping rubber damper on a taut cable.” KSCE Journal of Civil Engineering, Springer, Vol. 21, No. 3, pp. 928–936, DOI: 10.1007/s12205-016-0857-y.

    Article  Google Scholar 

  • Cu, V. H., Han, B., Pham, D. H., and Yan, W. T. (2018). “Free vibration and damping of a taut cable with an attached viscous mass damper.” KSCE Journal of Civil Engineering, Springer, Vol. 22, No. 5, pp. 1792–1802, DOI:10.1007/s12205-017-1167-8.

    Article  Google Scholar 

  • Flamand, O. (1995). “Rain-wind induced vibration of cables.” Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, Vol. 57, No. 2, pp. 353–362, DOI: 10.1016/0167-6105(94)00113-R.

    Article  Google Scholar 

  • Frahm, H. (1911). “Device for damping vibrations of bodies.” U.S. Patent No. 989,958. Washington, DC: US Patent and Trademark Office.

    Google Scholar 

  • Hwang, I., Lee, J. S., and Lee, H. (2011). “Movable anchorage system with FPB for vibration control of stay cables.” KSCE Journal of Civil Engineering, Springer, Vol. 15, No. 5, pp. 841–847, DOI: 10.1007/s12205-011-0816-6.

    Article  Google Scholar 

  • Irvine, H. M. (1978). “Free vibrations of inclined cables.” Journal of the Structural Division, ASCE, Vol. 104, No. 2, pp. 343–347.

    Google Scholar 

  • Irvine, H. M. (1981). Cable Structure, The MIT Press Cambridge, London, England.

    Google Scholar 

  • Irvine, H. M. and Caughey, T. K. (1974). “The linear theory of free vibrations of a suspended cable.” Proceedings of the Royal Society of London, The Royal Society, Vol. 341, No. 1626, pp. 299–315, DOI: 10.1098/rspa.1974.0189.

    Article  Google Scholar 

  • Ito, M. (1999). “Stay cable technology: Overview.” Proc. of the IABSE Conf., Cable-Stayed Bridges, Past, Present, and Future, Malmo, Sweden, pp. 481–490.

    Google Scholar 

  • Jansen, L. M. and Dyke, S. J. (2000). “Semi-active control strategies for MR dampers: Comparative study.” Journal of Engineering Mechanics, ASCE, Vol. 126, No. 8, pp. 795–803, DOI: 10.1061/(ASCE)0733-9399(2000)126:8(795).

    Article  Google Scholar 

  • Javadinasab-Hormozabad, S., Ramezani, M., and Ghorbani-Tanha, A. K. (2015). “Seismic behavior and vibration control of Lali cable stayed bridge using TMD.” 4 th Int. Conf. on Bridge (4IBC2015), Tehran, Iran.

    Google Scholar 

  • Johnson, E. A., Baker, G. A., Spencer, B. F., and Fujino, Y. (2007). “Semi-active damping of stay cables.” Journal of Engineering Mechanics, ASCE, Vol. 133, No. 1, pp. 1–11, DOI: 10.1061/(ASCE) 0733-9399(2007)133:1(1).

    Article  Google Scholar 

  • Jung, H. J., Spencer, B. F., and Lee, I. W. (2003). “Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers.” Journal of Structural Engineering, ASCE, Vol. 129, No. 7, pp. 873–883, DOI: 10.1061/(ASCE)0733-9445(2003)129:7(873).

    Article  Google Scholar 

  • Krenk, S. and Nielsen, S. R. (2002). “Vibrations of a shallow cable with a viscous damper.” Proceedings of the Royal Society of London, The Royal Society, Vol. 458, No. 2018, pp. 339–357, DOI: 10.1098/rspa.2001.0879.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, D. and Song, J. X. (2014). “Theoretical study on cable’s vibration control by single TMD.” Advanced Materials Research, Trans Tech Publications, Vol. 935, No. 1, pp. 211–214, DOI: 10.4028/www.scientific.net/AMR.935.211.

    Google Scholar 

  • Liu, T., Huang, H., and Sun, L. (2016). “Vibration control of stay cable using MR damper based on optimal nonlinear damper force.” IABSE Symposium Report, International Association for Bridge and Structural Engineering, Vol. 106, No. 9, pp. 472–480, DOI: 10.2749/222137816819258799.

    Article  Google Scholar 

  • Lu, L., Duan. Y. F., Spencer, B. F., Lu, X., and Zhou, Y. (2017). “Inertial mass damper for mitigating cable vibration.” Structural Control and Health Monitoring, Wiley, Vol. 24, No. 10, e1986, DOI: 10.1002/stc.1986.

    Article  Google Scholar 

  • Main, J. A. and Jones, N. P. (2001). “Evaluation of viscous dampers for stay-cable vibration mitigation.” Journal of Bridge Engineering, ASCE, Vol. 6, No. 6, pp. 385–397, DOI: 10.1061/(ASCE)1084-0702(2001)6:6(385).

    Article  Google Scholar 

  • Main, J. A. and Jones, N. P. (2002). “Free vibration of taut cable with attached damper. I: Linear viscous damper.” Journal of Engineering Mechanics, ASCE, Vol. 128, No. 10, pp. 1062–1071, DOI: 10.1061/(ASCE)0733-9399(2002)128:10(1062).

    Article  Google Scholar 

  • MATLAB and Statistics Toolbox Release (2014). The MathWorks, Inc., Natick, MA, USA, https://doi.org/mathworks.com.

  • McKenna, F., Fenves, G. L., and Scott, M. H. (2000). “Open system for earthquake engineering simulation.” University of California, Berkeley, CA, USA, https://doi.org/opensees.berkeley.edu.

    Google Scholar 

  • Meriam, J. L. and Kraig, L. G. (2008). Engineering Mechanics-Statics: 6th edition, John Wiley & Sons.

    Google Scholar 

  • Ok, S. Y., Kim, D. S., Park, K. S., and Koh, H. M. (2007). “Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers.” Engineering Structures, Elsevier, Vol. 29, No. 5, pp. 776–788, DOI: 10.1016/j.engstruct.2006.06.020.

    Article  Google Scholar 

  • Ormondroyd, J. and Den Hartog, J. P. (1928). “The theory of the dynamic vibration absorber.” Applied Mechanics, ASME, Vol. 50, No. 1, pp. 9–22.

    Google Scholar 

  • Park, K. S., Koh, H. M., Ok, S. Y., and Seo, C. W. (2005). “Fuzzy supervisory control of earthquake-excited cable-stayed bridges.” Engineering Structures, Elsevier, Vol. 27, No. 7, pp. 1086–1100, DOI: 10.1016/j.engstruct.2005.02.007.

    Article  Google Scholar 

  • Saadabad, N. A., Moradi, H., and Vossoughi, G. (2014). “Semi-active control of forced oscillations in power transmission lines via optimum tuneable vibration absorbers: with review on linear dynamic aspects.” International Journal of Mechanical Sciences, Elsevier, Vol. 87, No. 1, pp. 163–178, DOI: 10.1016/j.ijmecsci.2014.06.006

    Article  Google Scholar 

  • Salari, S., Javadinasab-Hormozabad, S., Ghorbani-Tanha, A. K., and Rahimian, M. (2015). “Application of TMD systems in vibration control of stay cables subjected to seismic loading.” In Proc. of the Int. Conf. on Civil Engineering, Architecture, and Urban Infrastructure, Tabriz, Iran.

    Google Scholar 

  • Spencer, B. F., Johnson, E. A., and Ramallo, J. C. (2000). “Smart isolation for seismic control.” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, JSME, Vol. 43, No. 3, pp. 704–711, DOI: 10.1299/jsmec.43.704.

    Google Scholar 

  • Starossek, U. (1994). “Cable dynamics -A review.” Structural Engineering International, IABSE, Vol. 4, No. 3, pp. 171–176, DOI: 10.2749/101686694780601908.

    Article  Google Scholar 

  • Stockbridge, G. H. (1925). “Overcoming vibration in transmission cables.” Electrical World, Vol. 86, No. 26, pp.1304–1306.

    Google Scholar 

  • Sun Microsystems, Inc. (2013). “Listing of Directory/man/tcl8.4/TclCmd/socket.” https://doi.org/www.tcl.tk/man/tcl8.4/TclCmd/socket.htm.

  • Symans, M. D. and Kelly, S. W. (1999). “Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 28, No. 1, pp. 37–60, DOI: 10.1002/(SICI)1096-9845(199901)28:1<37::AID-EQE803>3.0.CO;2-Z.

    Article  Google Scholar 

  • Tabatabai, H. and Mehrabi, A. B. (1999). “Tuned dampers and cable fillers for suppression of bridge stay cable vibrations.” No. NCHRPIDEA Project 50, Transportation Research Board, Skokie, Illinois.

    Google Scholar 

  • Tabatabai, H. and Mehrabi, A. B. (2000). “Design of mechanical viscous dampers for stay cables.” Journal of Bridge Engineering, ASCE, Vol. 5, No. 2, pp. 114–123, DOI: 10.1061/(ASCE)1084-0702(2000) 5:2(114).

    Article  Google Scholar 

  • U.S. Department of Transportation (2007). “Wind Induced Vibration of stay cables.” Publication No. FHWA-HRT-05-083, Federal Highway Administration, USA.

  • Watson, S. C. and Stafford, D. (1988). “Cables in trouble.” Civil Engineering, ASCE, Vol. 58, No. 4, pp. 38.

    Google Scholar 

  • Wu, W. J. and Cai, C. S. (2006). “Cable vibration reduction with a hungon TMD system: Parametrical study.” Journal of Vibration and Control, SAGE, Vol. 12, No. 8, pp. 881–899, DOI: 10.1177/1077546306065858.

    Article  MATH  Google Scholar 

  • Yoshimura, T., Inoue, A., Kaji, K., and Savage, M. (1989). “A study on the aerodynamic stability of the Aratsu bridge.” Proc. of the Canada-Japan Workshop on Bridge Aerodynamics, Ottawa, Canada, pp. 41–50.

    Google Scholar 

  • Zhou, P. and Li, H. (2016). “Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations.” Structural Control and Health Monitoring, Wiley, Vol. 23, No. 4, pp. 764–82, DOI: 10.1002/stc.1809.

    Article  MathSciNet  Google Scholar 

  • Zhou, H. and Sun, L. (2013). “Damping of stay cable with passive-on magnetorheological dampers: A full-scale test.” International Journal of Civil Engineering, Iranian Society of Civil Engineering, Vol. 11, No. 3, pp. 154–159.

    Google Scholar 

  • Zhou, H., Sun, L., and Xing, F. (2014). “Free vibration of taut cable with a damper and a spring.” Structural Control and Health Monitoring, Wiley, Vol. 21, No. 6, pp. 996–1014, DOI: 10.1002/stc.1628.

    Article  Google Scholar 

  • Zhou, H., Yang, X., Sun, L., and Xing, F. (2015). “Free vibrations of a two-cable network with near-support dampers and a cross-link.” Structural Control and Health Monitoring, Wiley, Vol. 22, No. 9, pp. 1173–1192, DOI: 10.1002/stc.1738.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir K. Ghorbani-Tanha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, S., Javadinasab Hormozabad, S., Ghorbani-Tanha, A.K. et al. Innovative Mobile TMD System for Semi-active Vibration Control of Inclined Sagged Cables. KSCE J Civ Eng 23, 641–653 (2019). https://doi.org/10.1007/s12205-018-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-0161-0

Keywords

Navigation