Skip to main content
Log in

Stochastic fixed-time synchronization of chaotic systems via smooth control

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper is concerned with the fixed-time synchronization of two chaotic systems, and further takes the stochastic noise into consideration. A novel smooth control protocol is developed to overcome the chattering problem caused by the signum function contained in the conventional finite/fixed-time controllers. In the light of the (stochastic) fixed-time stability theory, the sufficient conditions are derived for achieving the (stochastic) fixed-time synchronization of two chaotic systems, in which the upper bound of synchronization time can be estimated in advance. Finally, two classical chaotic systems are used to verify the validity of proposed theoretical results, which shows that fixed-time synchronization of chaotic systems is robust to noise perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64(8) (1990) 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  2. X. P. Guan, Z. P. Fan, C. L. Chen and C. C. Hua, Chaotic Control and Its Application on Secure Communication, National Defence Industry Press, Beijing (2002).

    Google Scholar 

  3. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Physics Reports, 366(1–2) (2002) 1–101.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  5. H. E. Kadji, J. C. Orou and P. Woafo, Synchronization dynamics in a ring of four mutually coupled biological systems, Communications in Nonlinear Science and Numerical Simulation, 13(7) (2008) 1361–1372.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 370(6491) (1994) 615–620.

    Article  Google Scholar 

  7. C. C. Cheng, Y. S. Lin and S. W. Wu, Design of adaptive sliding mode tracking controllers for chaotic synchronization and application to secure communications, Journal of the Franklin Institute, 349(8) (2012) 2626–2649.

    Article  MathSciNet  MATH  Google Scholar 

  8. Z. Huang, Z. Zhang, Y. Li, G. Song and Y. He, Nonlinear dynamic analysis of cutting head-rotor-bearing system of the roadheader, Journal of Mechanical Science and Technology, 33(3) (2019) 1033–1043.

    Article  Google Scholar 

  9. I. Grosu, E. Padmanabanm, P. K. Roy and S. K. Dana, Designing coupling for synchronization and amplification of chaos, Physical Review Letters, 100(23) (2008) 234102.

    Article  Google Scholar 

  10. D. Huang, Simple adaptive-feedback controller for identical chaos synchronization, Physical Review E, 71(3) (2005) 037203.

    Article  Google Scholar 

  11. D. Chen, J. Sun and C. Huang, Impulsive control and synchronization of general chaotic system, Chaos, Solitons and Fractals, 28(1) (2006) 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Chen, R. Zhang, X. Ma and S. Liu, Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69(1–2) (2012) 35–55.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82(15) (1999) 3042.

    Article  Google Scholar 

  14. J. J. Yan, M. L. Hung, T. Y. Chiang and Y. S. Yang, Robust synchronization of chaotic systems via adaptive sliding mode control, Physics Letters A, 356(3) (2006) 220–225.

    Article  MATH  Google Scholar 

  15. Z. M. Ge and C. H. Yang, The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems, Chaos, Solitons and Fractals, 35(5) (2008) 980–990.

    Article  MATH  Google Scholar 

  16. S. Li and Y. P. Tian, Finite time synchronization of chaotic systems, Chaos, Solitons and Fractals, 15(2) (2003) 303–310.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. P. Aghababa, S. Khanmohammadi and G. Alizadeh, Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling, 35(6) (2011) 3080–3091.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. P. Aghababa and H. P. Aghababa, A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs, Nonlinear Dynamics, 69(4) (2012) 1903–1914.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. P. Aghababa and H. P. Aghababa, Chaos synchronization of gyroscopes using an adaptive robust finite-time controller, Journal of Mechanical Science and Technology, 27(3) (2013) 909–916.

    Article  Google Scholar 

  20. N. Cai, W. Li and Y. Jing, Finite-time generalized synchronization of chaotic systems with different order, Nonlinear Dynamics, 64(4) (2011) 385–393.

    Article  MathSciNet  Google Scholar 

  21. K. Y. Shao, H. X. Guo and F. Han, Finite-time projective synchronization of fractional-order chaotic systems via soft variable structure control, Journal of Mechanical Science and Technology, 34(1) (2020) 369–376.

    Article  Google Scholar 

  22. S. Harshavarthini, R. Sakthivel and F. Kong, Finite-time synchronization of chaotic coronary artery system with input time-varying delay, Chaos, Solitons and Fractals, 134 (2020) 109683.

    Article  MathSciNet  Google Scholar 

  23. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57(8) (2012) 2106–2110.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Ao, T. Ma, R. V. Sanchez and H. Gan, Finite-time and fixed-time impulsive synchronization of chaotic systems, Journal of the Franklin Institute, 357(16) (2020) 11545–11557.

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Guo, G. Wen, Z. Peng and Y. Zhang, Global fixed-time synchronization of chaotic systems with different dimensions, Journal of the Franklin Institute, 357(2) (2020) 1155–1173.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Q. Wang, H. X. Yue, S. W. Liu and T. S. Li, Adaptive fixed-time control for Lorenz systems, Nonlinear Dynamics, 102(4) (2020) 2617–2625.

    Article  Google Scholar 

  27. A. S. Balamash, M. Bettayeb, S. Djennoune, U. M. Al-Saggaf and M. Moinuddin, Fixed-time terminal synergetic observer for synchronization of fractional-order chaotic systems, Chaos, 30(7) (2020) 073124.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. C. Ma, J. Wu and Y. Z. Sun, Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation, Kybernetika, 53(5) (2017) 838–852.

    MathSciNet  MATH  Google Scholar 

  29. M. Liu, J. Wu and Y. Z. Sun, Adaptive finite-time outer synchronization between two complex dynamical networks with noise perturbation, Nonlinear Dynamics, 89(4) (2017) 2967–2977.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Wu and X. Li, Finite-time and fixed-time synchronization of Kuramoto-oscillator network with multiplex control, IEEE Transactions on Control of Network Systems, 6(2) (2018) 863–873.

    Article  MathSciNet  MATH  Google Scholar 

  31. X. T. Tran and H. J. Kang, Robust adaptive chatter-free finite-time control method for chaos control and (anti-) synchronization of uncertain (hyper) chaotic systems, Nonlinear Dynamics, 80(1–2) (2015) 637–651.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Heidarzadeh and H. Salarieh, A chattering-free finite-time robust synchronization scheme for uncertain chaotic systems, Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 43(S1) (2019) S995–S1003.

    Article  Google Scholar 

  33. M. Shirkavand and M. Pourgholi, Robust fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design, Chaos, Solitons and Fractals, 113 (2018) 135–147.

    Article  MathSciNet  MATH  Google Scholar 

  34. Q. Li, X. Liu, Q. Zhu, S. Zhong and J. Cheng, Stochastic synchronization of semi-Markovian jump chaotic Lur’e systems with packet dropouts subject to multiple sampling periods, Journal of the Franklin Institute, 356(13) (2019) 6899–6925.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Xu, D. Tong, Q. Chen, W. Zhou and Y. Xu, Exponential synchronization of chaotic systems with stochastic noise via periodically intermittent control, International Journal of Robust and Nonlinear Control, 30(7) (2020) 2611–2624.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Lindner, J. García-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems, Physics Reports, 392(6) (2004) 321–424.

    Article  Google Scholar 

  37. M. Porfiri and R. Pigliacampo, Master-slave global stochastic synchronization of chaotic oscillators, SIAM Journal on Applied Dynamical Systems, 7(3) (2008) 825–842.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Wu, Z. C. Ma, Y. Z. Sun and F. Liu, Finite-time synchronization of chaotic systems with noise perturbation, Kybernetika, 51(1) (2015) 137–149.

    MathSciNet  MATH  Google Scholar 

  39. R. Z. Luo and Y. L. Wang, Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication, Chaos, 22(2) (2012) 023109.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20(2) (1963) 130–141.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. O. Chua, C. W. Wu, A. Huang and G. Q. Zhong, A universal circuit for studying and generating chaos, I. routes to chaos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(10) (1993) 732–744.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9(7) (1999) 1465–1466.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. K. Khalil and J. W. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River (2002).

    Google Scholar 

  44. S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38(3) (2000) 751–766.

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Mao, Stochastic Differential Equations and Applications, Woodhead Publishing, Horwood, England (1997).

    MATH  Google Scholar 

  46. J. Yu, S. Yu, J. Li and Y. Yan, Fixed-time stability theorem of stochastic nonlinear systems, International Journal of Control, 92(9) (2019) 2194–2200.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. L. Yin, S. Khoo, Z. H. Man and X. H. Yu, Finite-time stability and instability of stochastic nonlinear systems, Automatica, 47(12) (2011) 2671–2677.

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Z. Sun, S. Y. Leng, Y. C. Lai, C. Grebogi and W. Lin, Closed-loop control of complex networks: a trade-off between time and energy, Physical Review Letters, 119(19) (2017) 198301.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities [No. JUSRP121069], National Natural Science Foundation of China [No. 61972182, No. 61672264], the National Key R&D Program of China [No. 2016YFB0800305], and the Fundamental Research Funds of Suzhou University of Science and Technology [No. 332114604].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu.

Additional information

Jie Wu is currently a Lecturer at the School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China. He received his B.S. degree from Hainan Normal University in 2013, his M.S. degree from China University of Mining and Technology in 2015, and his Ph.D. in Electronic Engineering from Fudan University, Shanghai, China in 2020. His research interests include stability of chaotic systems, PMSM, and synchronization of complex networks with applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, X. & Ma, Rr. Stochastic fixed-time synchronization of chaotic systems via smooth control. J Mech Sci Technol 35, 4161–4168 (2021). https://doi.org/10.1007/s12206-021-0828-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0828-1

Keywords

Navigation