Skip to main content
Log in

Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, activated carbon (AC) web was prepared using physical activation under the layer of charcoal in high temperature furnace. The carbonization of acrylic fibrous waste was performed at different temperatures (800 °C, 1000 °C, and 1200 °C) with heating rate of 300 °C/h and at different holding time. At 1200 °C, the heating rate of 300 °C/h and no holding time provided better results of surface area as compared to carbonization at 800 °C and 1000 °C. The activated carbon web (AC) prepared at 1200 °C was used for removal of Acid Red 27 dye from aqueous media by varying different parameters like initial concentration of dye, stirring speed, adsorbent dosage, and pH. The results were evaluated using non-linear forms of Langmuir and Freundlich isotherms. The Freundlich isotherm was found to describe the results more effectively because of non-homogenous surface of activated carbon web. Further, the kinetics of adsorption was examined using linear and nonlinear forms of pseudo 1st order and pseudo 2nd order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Gupta and Suhas, J. Environ. Manag., 90, 2313 (2009).

    Article  CAS  Google Scholar 

  2. C. H. Huang, K. P. Chang, H. D. Ou, Y. C. Chiang, and C. F. Wang, Microporous Mesoporous Mater., 141, 102 (2011).

    Article  CAS  Google Scholar 

  3. E. Forgacs, T. Cserháti, and G. Oros, Env. Int., 30, 953 (2004).

    Article  CAS  Google Scholar 

  4. G. Ciardelli and N. Ranieri, Water Res., 35, 567 (2001).

    Article  CAS  Google Scholar 

  5. R. C. Bansal, “Activated Carbon Adsorption”, 1st ed., pp.25–28, Taylor and Francis Group, London, 2005.

    Book  Google Scholar 

  6. F. S. Hashem and M. S. Amin, J. Therm. Anal. Calorim., 116, 835 (2014).

    Article  CAS  Google Scholar 

  7. S. M. A. El-Gamal, M. S. Amin, and M. A. Ahmed, J. Env. Chem. Eng., 3, 1702 (2015).

    Article  CAS  Google Scholar 

  8. F. S. Hashem, M. S. Amin, and S. M. A. El-Gamal, Appl. Clay Sci., 115, 189 (2015).

    Article  CAS  Google Scholar 

  9. M. A. Daley, C. L. Mangun, J. A. DeBarrb, S. Riha, A. A. Lizzio, G. L. Donnals, and J. Economy, Carbon N. Y., 35, 411 (1997).

    Article  CAS  Google Scholar 

  10. C. L. Mangun, M. A. Daley, R. D. Braatz, and J. Economy, Carbon N. Y., 36, 123 (1998).

    Article  CAS  Google Scholar 

  11. G. T. Sivy and M. M. Coleman, Carbon N. Y., 19, 137 (1981).

    Article  CAS  Google Scholar 

  12. M. A. Nahil and P. T. Williams, J. Anal. Appl. Pyrolysis, 89, 51 (2010).

    Article  CAS  Google Scholar 

  13. V. Baheti, S. Naeem, J. Militky, M. Okrasa, and B. Tomkova, Fiber. Polym., 16, 2193 (2015).

    Article  CAS  Google Scholar 

  14. U. Gecgel, G. Ozcan, and G. C. Gurpinar, J. Chem., 201, 1 (2013).

    Article  Google Scholar 

  15. Z. Z. Chowdhury, S. M. Zain, R. A. Khan, and K. Khalid, Orient. J. Chem., 27, 405 (2011).

    CAS  Google Scholar 

  16. Y. Liu, Y. H. Choi, H. G. Chae, P. Gulgunje, and S. Kumar, Polym. Guildf, 54, 4003 (2013).

    Article  CAS  Google Scholar 

  17. M. A. Zaini, Y. Amano, and M. Machidaa, J. Hazard. Mater, 180, 552 (2010).

    Article  CAS  Google Scholar 

  18. S. Jagannathan, H. G. Chae, R. Jain, and S. Kumar, J. Power Sources, 185, 676 (2008).

    Article  CAS  Google Scholar 

  19. S. Naeem, V. Baheti, V. Tunakova, J. Militky, K. Daniel, and B. Tomkova, Carbon N. Y., 111, 439 (2017).

    Article  CAS  Google Scholar 

  20. Y. Ma, X. Yin, and Q. Li, Nonferrous Met. Soc., 23, 1652 (2013).

    Article  CAS  Google Scholar 

  21. S. Marius, C. Benoit, C. Igor, D. Mariana, and P. Stelian, Sci. Study Res., 12, 307 (2011).

    Google Scholar 

  22. I. Dahil, Environ. J., 2, 35 (2016).

    Google Scholar 

  23. D. C. Sharma and C. F. Forster, Water Res., 27, 1201 (1993).

    Article  CAS  Google Scholar 

  24. S. Naeem, V. Baheti, J. Militky, J. Wiener, P. Behera, and A. Ashraf, Fiber. Polym., 17, 1245 (2016).

    Article  CAS  Google Scholar 

  25. M. A. Rahman, S. M. R. Amin, and A. M. S. Alam, Dhaka Univ. J. Sci., 60, 185 (2012).

    CAS  Google Scholar 

  26. Y. Al-Degs, M. I. El-Barghouthi, A. El-Sheikh, and G. M. Walker, Dye Pigment., 77, 16 (2008).

    Article  CAS  Google Scholar 

  27. Y. Al-Degs, M. Khraisheh, S. Allen, and M. Ahmad, Water Res., 34, 927 (2000).

    Article  CAS  Google Scholar 

  28. I. Shah, R. Adnan, W. Ngah, and Y. Taufiq, PLoS One, 10 (2015).

  29. R. Baccar, P. Blánquez, J. Bouzid, M. Feki, and M. Sarrà, Chem. Eng. J., 165, 457 (2010).

    Article  CAS  Google Scholar 

  30. M. Ismail, C. N. Weng, H. Abdul Rahman, and A. Zakaria, J. Geogr. Earth Sci., 1, 1 (2013).

    Google Scholar 

  31. A. Demirbas, Energy Sources Part A, 31, 217 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salman Naeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman Naeem, M., Javed, S., Baheti, V. et al. Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste. Fibers Polym 19, 71–81 (2018). https://doi.org/10.1007/s12221-018-7189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7189-5

Keywords

Navigation