Skip to main content
Log in

Shielding-benefit Evaluation of Electromagnetic Radiation and UV Radiation for Multifunctional Composite Polypropylene Woven Fabrics

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

People have increasingly rising health consciousness in recent years and researchers are thus devoted themselves to develop multi-functional textile products. In this study, stainless steel (SS) filaments are used for electromagnetic shielding effectiveness (EMSE) while polypropylene (PP) filaments are used for ultraviolet resistance and good mechanical properties. Spinning and weaving continuous formation techniques are employed to produce wrapped yarns with SS and PP filaments, after which a weaving process is employed for the preparation of SS/PP woven fabrics. The woven fabrics are tested for EMSE and UV resistance, examining the effect of the lamination-layer numbers and lamination-layer angles. Test results show that the optimal EMSE and UV resistance occur when SS/PP woven fabrics are laminated with two layers at 90 °. Not only focus on the mechanical performance, the proposed woven fabrics with good EMSE, UV resistance, and a light weight, and are good candidate for a variety of application as required. The proposed UV resistance and EMSE woven fabrics significantly increase the additional values of traditional textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Erdem, Bull. Mat. Sci., 39, 963 (2016).

    CAS  Google Scholar 

  2. W. H. Organization, “Establishing a Dialogue on Risks from Electromagnetic Fields”, Geneva, Switzerland, 2002.

    Google Scholar 

  3. W. H. Organization, “Ionizing Radiation, Health Effects and Protective Measures”, 2016.

  4. K. Lai, R. J. Sun, M. Y. Chen, H. Wu, and A. X. Zha, Text. Res. J., 77, 242 (2007).

    CAS  Google Scholar 

  5. C. I. Su and J. T. Chern, Text. Res. J., 74, 51 (2004).

    CAS  Google Scholar 

  6. L. M. Green, A. B. Miller, P. J. Villeneuve, D. A. Agnew, M. L. Greenberg, J. H. Li, and K. E. Donnelly, Int. J. Cancer, 82, 161 (1999).

    CAS  Google Scholar 

  7. D. Wartenberg, Bioelectromagnetics, Suppl., 5, 586 (2001).

    Google Scholar 

  8. Energy Policy Act, PL 102–486, Section 2118, USA, 1992.

  9. S. Ma, IEEE Potentials, 12, 34 (1993).

    Google Scholar 

  10. K. Jagatheesan, A. Ramasamy, A. Das, and A. Basu, Indian J. Fibre Text. Tes., 39, 329 (2014).

    CAS  Google Scholar 

  11. S. Brzezinski, T. Rybicki, I. Karbownik, G. Malinowska, E. Rybicki, L. Szugajew, M. Lao, and K. Sledzinska, Fibres Text. East. Eur., 17, 66 (2009).

    CAS  Google Scholar 

  12. S. Q. Jiang, E. Newton, C. W. M. Yuen, and C. W. Kan, Text. Res. J., 76, 57 (2006).

    CAS  Google Scholar 

  13. Y. X. Lu and L. L. Xue, Compos. Sci. Technol., 72, 828 (2012).

    CAS  Google Scholar 

  14. Y. X. Lu, Q. Liang, and W. L. Li, Mater. Chem. Phys., 140, 553 (2013).

    CAS  Google Scholar 

  15. H. Zhao, Q. Liang, and Y. X. Lu, Fiber. Polym., 16, 593 (2015).

    CAS  Google Scholar 

  16. H. Zhao, L. Hou, and Y. X. Lu, Chem. Eng. J., 297, 170 (2016).

    CAS  Google Scholar 

  17. J. Hu, G. Li, J. Shi, X. Yang, and X. Ding, Text. Res. J., 87, 902 (2016).

    Google Scholar 

  18. A.Y., V. AR, “Advances in Agronomy — Environmental Chemistry of Silver in Soils: Current and Historic Perspective”, Amsterdam, The Netherlands, 2012.

    Google Scholar 

  19. D. Barcelo, “Comprehensive Analytical Chemistry — Engineered Nanoparticles in Textiles and Textile Wastewaters”, Elsevier, Amsterdam, The Netherlands, 2012.

    Google Scholar 

  20. R. H. Guo and S. Q. Jiang, “Surface Modification of Textiles Modification of Textile Surfaces Using Electro Less Deposition”, Woodhead Publishing Limited, 2009.

  21. R. Perumalraj and B. S. Dasaradan, Indian J. Fibre Text. Tes., 36, 35 (2011).

    CAS  Google Scholar 

  22. S. Palamutcu, A. Ozek, C. Karpuz, and N. Dag, Tekstil Ve Konfeksiyon, 20, 199 (2010).

    Google Scholar 

  23. H. Ozdemir and A. Ozkurt, Tekstil Ve Konfeksiyon, 23, 124 (2013).

    Google Scholar 

  24. D. Duran and H. Kadoglu, Text. Res. J., 85, 1009 (2015).

    CAS  Google Scholar 

  25. H. Ozdemir, S. S. Ugurlu, and A. Ozkurt, J. Ind. Text., 45, 416 (2015).

    CAS  Google Scholar 

  26. V. Safarova, M. Tunak, and J. Militky, Text. Res. J., 85, 673 (2015).

    CAS  Google Scholar 

  27. C. W. Lou, T. A. Lin, A. P. Chen, and J. H. Lin, J. Ind. Text., 46, 214 (2016).

    CAS  Google Scholar 

  28. J. H. Lin, T. A. Lin, T. R. Lin, J. C. Jhang, and C. W. Lou, J. Ind. Text., 49, 365 (2018).

    Google Scholar 

  29. Intersun; The Global UV Project, WHO (www.who.int), 2003.

Download references

Acknowledgements

The authors would especially like to thank Ministry of Science and Technology of Taiwan, for financially supporting this research under Contract MOST 106-2622-E-468-05-CC3, MOST 107-2622-E-035-011-CC3 and MOST 107-2632-E-035-001-.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ching-Wen Lou or Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T.A., Chuang, YC., Lin, JY. et al. Shielding-benefit Evaluation of Electromagnetic Radiation and UV Radiation for Multifunctional Composite Polypropylene Woven Fabrics. Fibers Polym 21, 2380–2388 (2020). https://doi.org/10.1007/s12221-020-3140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-3140-2

Keywords

Navigation