Skip to main content
Log in

High Velocity Impact Response of Aluminum- Carbon Fibers-Epoxy Laminated Composites Toughened by Nano Silica and Zirconia

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research work investigated the effects of SiO2 and ZrO2 nanoparticles type and content incorporated into an epoxy matrix on the high velocity impact behavior of carbon fiber reinforced aluminum laminates (CARALL). CARALL specimens consisted of a 0/90/90/0 stacking sequence of a carbon-epoxy composite containing 0, 1, 3, 5 and 7 wt% of each of nanoparticles sandwiched between two layers of aluminum 2024-T3. To observe the toughening effects of the nanoparticles on the fracture surface of the impacted CARALL, a typical field emission scanning electron microscope (FESEM) was employed. Impact energy absorption of CARALL was at most increased by 18 % and 12 % with the nanoparticles content of 5 wt% SiO2 and 3 wt% ZrO2, respectively. Overloading of the nanoparticles content up to 7 wt% resulted in the creation of nanoparticles aggregated sites associated with loss in the energy absorption capacity. FESEM fractography procedure also showed that the crack deflection and pinning were the most recognizable toughening mechanisms exhibited by nanoparticles. Overall, the controlled addition of SiO2/ZrO2 rigid nanoparticles to CARALL was found to be a promising method for improving the high velocity impact energy absorption of CARALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sinke, J. Mater. Sci., 41, 6777 (2006).

    Article  CAS  Google Scholar 

  2. K. Subramaniam, S. Dhar Malingam, N. L. Feng, and O. Bapokutty, Polym. Compos., 40, 568 (2019).

    Article  CAS  Google Scholar 

  3. G. Lawcock, L. Ye, Y. W. Mai, and C. T. Sun, Compos. Sci. Technol., 57, 35 (1997).

    Article  CAS  Google Scholar 

  4. L. Ferrante, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, and P. Gaudenzi, Mater. Des., 98, 98 (2016).

    Article  CAS  Google Scholar 

  5. F. D. Morinière, R. C. Alderliesten, and R. Benedictus, Int. J. Impact Eng., 67, 27 (2014).

    Article  Google Scholar 

  6. X. Zhang, Q. Ma, Y. Dai, F. Hu, G. Liu, Z. Xu, G. Wei, T. Xu, Q. Zeng, and W. Xie, Appl. Surf. Sci., 427, 897 (2018).

    Article  CAS  Google Scholar 

  7. M. Hagenbeek, B. Müller, and J. Sinke, Adv. Eng. Mater., 21, 1800084 (2019).

    Article  CAS  Google Scholar 

  8. V. V. Silberschmidt, “Dynamic Deformation, Damage and Fracture in Composite Materials and Structures”, 1st ed., pp.495–501, Woodhead Publishing, Duxford, Cambridge, 2016.

    Google Scholar 

  9. S. Liu, L. Lang, E. Sherkatghanad, Y. Wang, and W. Xu, Appl. Compos. Mater., 25, 255 (2018).

    Article  Google Scholar 

  10. X. Li, X. Zhang, Y. Guo, V. P. W Shim, J. Yang, and G. B. Chai, Int. J. Impact Eng, 114, 32 (2018).

    Article  Google Scholar 

  11. H. Ebrahimnezhad-Khaljiri and R. Eslami-Farsani, Polym. Compos., 38, 1412 (2017).

    Article  CAS  Google Scholar 

  12. G. C. Yu, L. Z. Wu, L. Ma, and J. Xiong, Compos. Struct., 119, 757 (2015).

    Article  Google Scholar 

  13. J. G. Kim, H. C. Kim, J. B. Kwon, D. K. Shin, J. J. Lee, and H. Huh, J. Compos. Mater., 49, 1179 (2015).

    Article  CAS  Google Scholar 

  14. A. Abdi, R. Eslami-Farsani, and H. Khosravi, Fiber. Polym., 19, 635 (2018).

    Article  CAS  Google Scholar 

  15. H. Khosravi and R. Eslami-Farsani, Polym. Compos.39, E677 (2018).

    Article  CAS  Google Scholar 

  16. A. Mirzapour, M. H. Asadollahi, S. Baghshaei, and M. Akbari, Compos. Pt. A-Appl. Sci. Manuf., 63, 159 (2014).

    Article  CAS  Google Scholar 

  17. J. L. Tsai, B. H. Huang, and Y. L. Cheng, Procedia Eng., 14, 1982 (2011).

    Article  CAS  Google Scholar 

  18. J. Li, C. Peng, Z. Li, Z. Wu, and S. Li, RSC Adv., 6, 61393 (2016).

    Article  CAS  Google Scholar 

  19. E. E. Haro, A. G. Odeshi, and J. A. Szpunar, Int. J. Impact Eng, 96, 11 (2016).

    Article  Google Scholar 

  20. N. Zareei, A. Geranmayeh, and R. Eslami-Farsani, Fiber. Polym., 20, 1054 (2019).

    Article  CAS  Google Scholar 

  21. B. Muthu Chozha Rajan, A. Senthil Kumar, T. Sornakumar, P. Senthamaraikannan, and M. R. Sanjay, Polym. Compos., 40, E1041 (2019).

    Article  CAS  Google Scholar 

  22. T. Pärnänen, M. Kanerva, E. Sarlin, and O. Saarela, Compos. Struct., 119, 777 (2015).

    Article  Google Scholar 

  23. O. H. Paiva Martins Fontes, F. L. Bastian, and E. M. Castrodeza, Fatigue Fract. Eng. Mater. Struct., 38, 268 (2015).

    Article  Google Scholar 

  24. G. C. Jacob, J. F. Fellers, S. Simunovic, and J. M. Starbuck, J. Compos. Mater, 36, 813 (2002).

    Article  CAS  Google Scholar 

  25. H. Wang, Y. Bai, S. Liu, J. Wu, and C. P. Wong, Acta Mater, 50, 4369 (2002).

    Article  CAS  Google Scholar 

  26. Y. Tang, L. Ye, Z. Zhang, and K. Friedrich, Compos. Sci. Technol., 86, 26 (2013).

    Article  CAS  Google Scholar 

  27. Q. Wu, R. Zhao, Q. Liu, T. Jiao, J. Zhu, and F. Wang, Mater. Des., 149, 15 (2018).

    Article  CAS  Google Scholar 

  28. F. F. Lange, Philos. Mag., 22, 983 (1970).

    Article  CAS  Google Scholar 

  29. M. T. Demirci, N. Tarakçıoğlu, A. Avcı, A. Akdemir, and İ. Demirci, Compos. Pt. B-Eng, 119, 114 (2017).

    Article  CAS  Google Scholar 

  30. P. Dittanet and R. A. Pearson, Polymer, 53, 1890 (2012).

    Article  CAS  Google Scholar 

  31. J. de J. Figueroa-Lara, M. Torres-Rodríguez, M. Gutiérrez-Arzaluz, and M. Romero-Romo, Materials, 10, 1135 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  32. U. A. Khashaba, Chin. J. Aeronaut., 29, 520 (2016).

    Article  Google Scholar 

  33. L.-X. Gong, L.-L. Hu, J. Zang, Y.-B. Pei, L. Zhao, and L.-C. Tang, Fiber. Polym., 16, 2056 (2015).

    Article  CAS  Google Scholar 

  34. P. Dittanet, R. A. Pearson, and P. Kongkachuichay, Int. J. Adhes. Adhes., 78, 74 (2017).

    Article  CAS  Google Scholar 

  35. M. Landowski, G. Strugała, M. Budzik, and K. Imielińska, Compos. Pt. B-Eng., 113, 91 (2017).

    Article  CAS  Google Scholar 

  36. M. Shariati, G. Farzi, and A. Dadrasi, Constr. Build. Mater., 78, 362 (2015).

    Article  Google Scholar 

  37. S. Zhu and G. B. Chai, Compos. Sci. Technol., 72, 1793 (2012).

    Article  CAS  Google Scholar 

  38. A. Seyed Yaghoubi and B. Liaw, Conf. Proc. Soc. Exp. Mech. Ser., 7, 189 (2013).

    Article  Google Scholar 

  39. F. Hashangen, Compos. Struct., 46, 147 (1999).

    Article  Google Scholar 

  40. F. Hashagen and R. DeBorst, Comput. Methods Appl. Mech. Eng., 185, 141 (2000).

    Article  Google Scholar 

  41. G. Wu, J. M. Yang, and H. T. Hahn, J. Mater. Sci., 42, 948 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Eslami-Farsani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, H., Eslami-Farsani, R. & Ebrahimnezhad-Khaljiri, H. High Velocity Impact Response of Aluminum- Carbon Fibers-Epoxy Laminated Composites Toughened by Nano Silica and Zirconia. Fibers Polym 21, 170–178 (2020). https://doi.org/10.1007/s12221-020-9594-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9594-4

Keywords

Navigation