Skip to main content

Advertisement

Log in

Community Completeness: Linking Local and Dark Diversity within the Species Pool Concept

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Biodiversity of ecological communities has been examined widely. However, comparisons of observed species richness are limited because they fail to reveal what part of the differences are caused by natural variation in species pool size and what part is due to dark diversity – the absence of suitable species from a species pool. In other words, conventional biodiversity inventories do not convey information about how complete local plant communities are. We therefore propose the community completeness concept – a new perspective on the species pool framework. In order to ascertain community completeness, we need to estimate the extent of dark diversity, for which several methods are under development. We recommend the Community Completeness Index based on a log-ratio (or logistic) expression: ln(observed richness/dark diversity). This metric offers statistical advantages over other methods (e.g. the proportion of observed richness from the species pool). We discuss how community completeness can be related to long-term and successional community stability, landscape properties and disturbance patterns as well as to a variety of biotic interactions within and among trophic levels. The community completeness concept is related to but distinctive from the alpha-beta-gamma diversity approach and the community saturation phenomenon. The Community Completeness Index is a valuable metric for comparing biodiversity of different ecosystems for nature conservation. It can be used to measure the success of ecological restoration and vulnerability to invasion by alien species. In summary, community completeness is an interface between observed local observed species richness and dark diversity, which can be useful both in theoretical and applied biodiversity research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akatov V, Akatova T (2010) Saturation and invasion resistance of non-interactive plant communities. Russian J Ecol 41:229–236

    Article  Google Scholar 

  • Allan E, van Ruijven J, Crawley MJ (2010) Foliar fungal pathogens and grassland biodiversity. Ecology 91:2572–2582

    Article  PubMed  Google Scholar 

  • Al Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977) A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol 65:759–791

    Article  Google Scholar 

  • Bacon-Shone J (2011) A short history of compositional data analysis: Theory and Applications. In Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis. John Wiley & Sons, West Sussex, pp 3–11

    Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Brändle M, Durka W, Krug H, Brandl R (2003) The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography 26:652–660

    Article  Google Scholar 

  • Cam E, Nichols JD, Sauer JR, Hines JE, Flather CH (2000) Relative species richness and community completeness: bird and urbanization in the Mid-Atlantic states. Ecol Appl 10:1196–1210

    Article  Google Scholar 

  • Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biol 18:44–62

    Article  Google Scholar 

  • Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12

    Article  Google Scholar 

  • de Bello F, Lavorel S, Gerhold P, Reier Ü, Pärtel M (2010) A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol Conservation 143:9–17

    Article  Google Scholar 

  • de Bello F, Price JN, Münkemüller T, Liira J, Zobel M, Thuiller W, Gerhold P, Götzenberger L, Lavergne S, Lepš J, Zobel K, Pärtel M (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273

    Article  PubMed  Google Scholar 

  • Eriksson O (1993) The species-pool hypothesis and plant community diversity. Oikos 68:371–374

    Article  Google Scholar 

  • Eriksson O, Fröborg H (1996) “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinum shrubs. Canad J Bot 74:1369–1374

    Article  Google Scholar 

  • Ewald J (2002) A probabilistic approach to estimating species pools from large compositional matrices. J Veg Sci 13:191–198

    Article  Google Scholar 

  • Fridley J, Stachowicz J, Naeem S, Sax D, Seabloom E, Smith M, Stohlgren T, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ, Golwell RK (2011) Estimating species richness. In Magurran AE, McGill BJ (eds) Biological diversity; frontiers in management and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  • Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities – approaches, patterns and prospects. Biol Rev 87:111–127

    Article  PubMed  Google Scholar 

  • Graves GR, Gotelli NJ (1983) Neotropical land-bridge avifaunas: new approaches to null hypotheses in biogegoraphy. Oikos 41:322–333

    Article  Google Scholar 

  • Guisan A, Rahbek C (2011) SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444

    Article  Google Scholar 

  • Gustafsson C, Ehrlén J, Eriksson O (2002) Recruitment in Dentaria bulbifera; the roles of dispersal, habitat quality and mollusc herbivory. J Veg Sci 13:719–724

    Google Scholar 

  • Hiiesalu I, Öpik M, Metsis M, Lilje L, Davidson J, Vasar M, Moora M, Zobel M, Wilson SD, Pärtel M (2012) Plant species richness belowground: higher richness and new patterns revealed by next generation sequencing. Molec Ecol 21:2004–2016

    Article  CAS  Google Scholar 

  • Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ, Harpole WS, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingerpuu N, Vellak K, Kukk T, Pärtel M (2001) Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires. Biodivers & Conservation 10:2153–2166

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Lepš J (2005) Diversity and ecosystem function. In van der Maarel E (ed) Vegetation ecology. Blackwell Science, Malden, MA, pp 199–237

    Google Scholar 

  • Lessard J-P, Belmaker J, Myers JA, Chase JM, Rahbek C (2012) Inferring local ecological processes amid species pool influences. Trends Ecol Evol 27:600–607

    Article  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mokany K, Paini DR (2011) Dark diversity: adding the grey. Trends Ecol Evol 26:264–265

    Article  PubMed  Google Scholar 

  • Moles AT, Flores-Moreno H, Bonser SP, Warton DI, Helm A, Warman L, Eldridge DJ, Jurado E, Hemmings FA, Reich PB, Cavender-Bares J, Seabloom EW, Mayfield MM, Sheil D, Djietror JC, Peri PL, Enrico L, Cabido MR, Setterfield SA, Lehmann CER, Thomson FJ (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127

    Article  Google Scholar 

  • Moora M, Daniell T, Kalle H, Liira J, Püssa K, Roosaluste E, Öpik M, Wheatley R, Zobel M (2007) Spatial pattern and species richness of boreonemoral forest understorey and its determinants – A comparison of diffirently managed forests. Forest Ecol Managem 250:64–70

    Article  Google Scholar 

  • Münzbergová Z, Herben T (2004) Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species. Oikos 105:408–414

    Article  Google Scholar 

  • Myers JA, Harms KE (2009) Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol Lett 12:1250–1260

    Article  PubMed  Google Scholar 

  • Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. Proc Roy Soc B 278:3644–3653

    Article  Google Scholar 

  • Pärtel M, Laanisto L, Zobel M (2007b) Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology 88:1091–1097

    Article  PubMed  Google Scholar 

  • Pärtel M, Szava-Kovats R, Zobel M (2011) Dark diversity: shedding light on absent species. Trends Ecol Evol 26:124–128

    Article  PubMed  Google Scholar 

  • Pärtel M, Kalamees R, Zobel M, Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. J Veg Sci 10:561–570

    Article  Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Pärtel M, Helm A, Reitalu T, Liira J, Zobel M (2007a) Grassland diversity related to the Late Iron Age human population density. J Ecol 95:574–582

    Article  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Article  Google Scholar 

  • Pykälä J (2004) Immediate increase in plant species richness after clear cutting of boreal herb-rich forests. Appl Veg Sci 7:29–34

    Article  Google Scholar 

  • Questad EJ, Foster BL (2007) Vole disturbances and plant diversity in a grassland metacommunity. Oecologia 153:341–351

    Article  PubMed  Google Scholar 

  • Rabotnov TA (1984) Phytocoenology. Moscow State University, Moscow

    Google Scholar 

  • Rabotnov TA (1987) Experimental phytocoenology. Moscow State University, Moscow

    Google Scholar 

  • Ramenskii LG (1924) Osnovnye zakonomernosti rastitel'nogo pokrova i metody ikh izucheniya (na osnovanii geobotanicheskikh issledovanii v Voronezhskoi guberinii) (Basic regularities of vegetation cover and their study (on the basis of geobotanic researches in Voronezh province)). Vestnik opytnogo dela Sredne-chernozemnoi oblasti 1924(Jan–Feb):37–73

  • Rosén E, van der Maarel E (2000) Restoration of alvar vegetation on Öland, Sweden. Appl Veg Sci 3:65–72

    Article  Google Scholar 

  • Sádlo J, Chytrý M, Pyšek P (2007) Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–321

    Google Scholar 

  • Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conservation 143:1405–1413

    Article  Google Scholar 

  • Schnoor TK, Olsson PA (2010) Effects of soil disturbance on plant diversity of calcareous grasslands. Agric Ecosyst Environm 139:714–719

    Article  Google Scholar 

  • Sonnier G, Shipley B, Navas M (2010) Plant traits, species pools and the prediction of relative abundance in plant communities: a maximum entropy approach. J Veg Sci 21:318–331

    Article  Google Scholar 

  • Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annual Rev Ecol Evol Syst 42:465–487

    Article  Google Scholar 

  • Szava-Kovats R, Zobel M, Pärtel M (2012) The local–regional species richness relationship: new perspectives on the null-hypothesis. Oikos 121:321–326

    Article  Google Scholar 

  • Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Molec Ecol 21:1789–1793

    Article  CAS  Google Scholar 

  • Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 58:239–250

    Article  Google Scholar 

  • Tuvi EL, Reier Ü, Vellak A, Szava-Kovats R, Pärtel M (2011) Establishment of protected areas in different ecoregions, ecosystems, and diversity hotspots under successive political systems. Biol Conservation 144:1726–1732

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Vítová A, Lepš J (2011) Experimental assessment of dispersal and habitat limitation in an oligotrophic wet meadow. Pl Ecol 212:1231–1242

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan Davies T, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

  • Zobel M (1992) Plant species coexistence: The role of historical, evolutionary and ecological factors. Oikos 65:314–320

    Article  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  CAS  PubMed  Google Scholar 

  • Zobel K, Liira J (1997) A scale-independent approach to the richness vs biomass relationship in ground-layer plant communities. Oikos 80:325–332

    Article  Google Scholar 

  • Zobel M, Otto R, Laanisto L, Naranjo-Cigala A, Pärtel M, Fernandez-Palacios JM (2011) The formation of species pools: historical habitat abundance affects current local diversity. Global Ecol Biogeogr 20:251–259

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Union 7th framework project SCALES (FP7-226852), European Regional Development Fund (Center of Excellence FIBIR) and the University of Tartu (SF0180095s08, SF0180098s08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meelis Pärtel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pärtel, M., Szava-Kovats, R. & Zobel, M. Community Completeness: Linking Local and Dark Diversity within the Species Pool Concept. Folia Geobot 48, 307–317 (2013). https://doi.org/10.1007/s12224-013-9169-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-013-9169-x

Keywords

Navigation