Skip to main content

Advertisement

Log in

Novel Applications of Technology for Advancing Tidal Marsh Ecology

  • Special Issue: Concepts and Controversies in Tidal Marsh Ecology Revisited
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Over the last 20 years, innovations have led to the development of exciting new technologies and novel applications of established technologies, collectively increasing the scale, scope, and quality of research possible in tidal marsh systems. Thus, ecological research on marshes is being revolutionized, in the same way as ecological research more generally, by the availability of new tools and analytical techniques. This perspective highlights current and potential applications of novel research technologies for marsh ecology. These are summarized under several themes: (1.) imagery — sophisticated imaging sensors mounted on satellites, drones, and underwater vehicles; (2.) animal tracking — acoustic telemetry, passive integrated transponder (PIT) tags, and satellite tracking, and (3.) biotracers — investigation of energy pathways and food web structure using chemical tracers such as compound-specific stable isotopes, isotope addition experiments, contaminant analysis, and eDNA. While the adoption of these technological advances has greatly enhanced our ability to examine contemporary questions in tidal marsh ecology, these applications also create significant challenges with the accessibility, processing, and synthesis of the large amounts of data generated. Implementation of open science practices has allowed for greater access to data. Newly available machine learning algorithms have been widely applied to resolve the challenge of detecting patterns in massive environmental datasets. The potential integration on digital platforms of multiple, large data streams measuring physical and biological components of tidal marsh ecosystems is an opportunity to advance science support for management responses needed in a rapidly changing coastal landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeysinghe, T.A., A.S. Milas, K. Mrend, B. Hohman, P. Reil, A. Gregory, and A. Vazquez-Ortega. 2019. Mapping invasive Phragmites australis in the Old Woman Creek estuary using UAV remote sensing and machine learning classifiers. Remote Sensing 11 (11): 1308.

    Article  Google Scholar 

  • Baker, R., and N. Waltham. 2020. Tethering mobile aquatic organisms to measure predation: A renewed call for caution. Journal of Experimental Marine Biology and Ecology 523: 151270.

    Article  Google Scholar 

  • Baker, R., B. Fry, L.P. Rozas, and T.J. Minello. 2013. Hydrodynamic regulation of salt marsh contributions to aquatic food webs. Marine Ecology Progress Series 490: 37–52.

    Article  CAS  Google Scholar 

  • Baker, R., M.D. Taylor, K.W. Able, M.W. Beck, J. Cebrian, D.D. Colombano, R.M. Connolly, C. Currin, L.A. Deegan, I.C. Feller, B.L. Gilby, M.E. Kimball, T.J. Minello, L.P. Rozas, C. Simenstad, R.E. Turner, N.J. Waltham, M.P. Weinstein, S.L. Ziegler, P.S.E. zu Ermgassen, C. Alcott, S.B. Alford, M.A. Barbeau, S.C. Crosby, K. Dodds, A. Frank, J. Goeke, L.A.G. Gaines, F.E. Hardcastle, C.J. Henderson, W.R. James, M.D. Kenworthy, J. Lesser, D. Mallick, C.W. Martin, A.E. McDonald, C. McLuckie, B.H. Morrison, J.A. Nelson, G.S. Norris, J. Ollerhead, J.W. Pahl, S. Ramsden, J.S. Rehage, J.F. Reinhardt, R.J. Rezek, L.M. Risse, J.A.M. Smith, E.L. Sparks, and L.W. Staver. 2020. Fisheries rely on threatened salt marshes. Science 370 (6517): 670–671.

    Article  Google Scholar 

  • Baltensperger, A.P., and F. Huettmann. 2015. Predicted shifts in small mammal distributions and biodiversity in the altered future environment of Alaska: An open access data and machine learning perspective. PLoS ONE 10 (7): e0132054.

    Article  CAS  Google Scholar 

  • Banerjee, A., M. Chakrabarty, N. Rakshit, A.R. Bhowmick, and S. Ray. 2019. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecological Indicators 100: 99–117.

    Article  CAS  Google Scholar 

  • Beauchamp, J.S., K.M. Hart, M.S. Cherkiss, and F.J. Mazzotti. 2018. Variation in home range size and patterns in adult female American crocodiles Crocodylus acutus. Endangered Species Research 36: 161–171.

    Article  Google Scholar 

  • Becken, S., B. Stantic, J. Chen, A.R. Alaei, and R.M. Connolly. 2017. Monitoring the environment and human sentiment on the Great Barrier Reef: Assessing the potential of collective sensing. Journal of Environmental Management 203 (Pt 1): 87–97.

    Article  Google Scholar 

  • Becker, A., P.D. Cowley, A.K. Whitfield, J. Järnegren, and T.F. Næsje. 2011. Diel fish movements in the littoral zone of a temporarily closed South African estuary. Journal of Experimental Marine Biology and Ecology 406 (1-2): 63–70.

    Article  Google Scholar 

  • Bennett, M.A., A. Becker, T. Gaston, and M.D. Taylor. 2020. Connectivity of large-bodied fish with a recovering estuarine tidal marsh, revealed using an imaging sonar. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00822-0.

  • Berejikian, B.A., M.E. Moore, and S.J. Jeffries. 2016. Predator-prey interactions between harbor seals and migrating steelhead trout smolts revealed by acoustic telemetry. Marine Ecology Progress Series 543: 21–35.

    Article  Google Scholar 

  • Berry, O., C.M. Bulman, M. Bunce, M. Coghlan, D.C. Murray, and R.D. Ward. 2015. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series 540: 167–181.

    Article  CAS  Google Scholar 

  • Boswell, K.M., M.P. Wilson, and J.H. Cowan. 2008. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. North American Journal of Fisheries Management 28 (3): 799–807.

    Article  Google Scholar 

  • Boswell, K.M., M.E. Kimball, G. Rieucau, J.G. Martin, D.A. Jacques, D. Correa, and D.M. Allen. 2019. Tidal stage mediates periodic asynchrony between predator and prey nekton in salt marsh creeks. Estuaries and Coasts 42 (5): 1342–1352.

    Article  Google Scholar 

  • Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on estuarine and coastal science, Vol 7, ed. E. Wolanski and D.S. McLusky, 143–173. Waltham: Academic Press.

    Chapter  Google Scholar 

  • Chen, C.Y., M.D. Ward, J.J. Williams, and N.S. Fisher. 2016. Metal bioaccumulation by estuarine food webs in New England, USA. Journal of Marine Science and Engineering 4 (2): 41.

    Article  Google Scholar 

  • Christin, S., E. Hervet, and N. Lecomte. 2019. Applications for deep learning in ecology. Methods in Ecology and Evolution 10 (10): 1632–1644.

    Article  Google Scholar 

  • Colombano, D.D., A.D. Manfree, T.A. O’Rear, J.R. Durand, and P.B. Moyle. 2020a. Estuarine-terrestrial gradients enhance nursery function for resident and transient fishes in the San Francisco Estuary. Marine Ecology Progress Series 637: 141–157.

    Article  Google Scholar 

  • Colombano, D.D., J.M. Donovan, D.E. Ayers, T.A. O’Rear, and P.B. Moyle. 2020b. Tidal effects on marsh habitat use by three fishes in the San Francisco estuary. Environmental Biology of Fishes 103 (5): 605–623.

    Article  Google Scholar 

  • Colombano, D.D., Litvin, S.Y., Ziegler, S.L., Alford, S.B., Baker, R., Barbeau, M.A., Cebrian, J., Connolly, R.M., Currin, C.A., Deegan, L.A., Lesser, J.S., Martin, C.W., McDonald, A.E., McLuckie, C., Morrison, B.H., Pahl, J.W., Risse, L.M., Smith, J.A.M., Staver, L.W., Turner, R.E., and Waltham, N.J. 2021. Climate change implications for tidal marshes and food web linkages to estuarine and coastal nekton. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00891-1.

  • Colomina, I., and P. Molina. 2014. Unmanned aerial systems for phtotogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 92: 79–97.

    Article  Google Scholar 

  • Connolly, R.M. 1999. Saltmarsh as habitat for fish and nektonic crustaceans: Challenges in sampling designs and methods. Australian Journal of Ecology 24 (4): 422–430.

    Article  Google Scholar 

  • Connolly, P.J. 2010. Guidelines for calculating and enhancing detection efficiency of PIT tag interrogation systems. In PNAMP Special Publication: Tagging, Telemetry and Marking Measures for Monitoring Fish Populations—A compendium of new and recent science for use in informing technique and decision modalities, ed. K. Wolf and J. O’Neal, 119–125. Pacific Northwest Aquatic Monitoring Partnership Special Publication.

  • Connolly, R.M., M. Guest, A.J. Melville, and J. Oakes. 2004. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138 (2): 161–167.

    Article  Google Scholar 

  • Cooke, S.J., J.W. Brownscombe, G.D. Raby, F. Broell, S.G. Hinch, T.D. Clark, and J.M. Semmens. 2016. Remote bioenergetics measurements in wild fish: Opportunities and challenges. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 202: 23–37.

    Article  CAS  Google Scholar 

  • Coulombier, T., U. Neumeier, and P. Bernatchez. 2012. Sediment transport in a cold climate salt marsh (St. Lawrence Estuary, Canada), the importance of vegetation and waves. Estuarine Coastal and Shelf Science 101: 64–75.

    Article  Google Scholar 

  • Cristescu, M.E. 2014. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends in Ecology and Evolution 29 (10): 566–571.

    Article  Google Scholar 

  • Dance, M.A., and J.R. Rooker. 2015. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery. Estuaries and Coasts 167: 447–457.

    Article  Google Scholar 

  • Ditria, E.M., S. Lopez-Marcano, M.K. Sievers, E.L. Jinks, C.J. Brown, and R.M. Connolly. 2020a. Automating the analysis of fish abundance using object detection: Optimising animal ecology with deep learning. Frontiers in Marine Science 7: 429.

    Article  Google Scholar 

  • Ditria, E.M., M. Sievers, S. Lopez-Marcano, E.L. Jinks, and R.M. Connolly. 2020b. Deep learning for automated analysis of fish abundance: The benefits of training across multiple habitats. Environmental Monitoring and Assessment 192 (11): 698.

    Article  Google Scholar 

  • Dohner, S.M., T.C. Pilegard, and A.C. Trembanis. 2020. Coupling traditional and emergent technologies for improved coastal zone mapping. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00724-1.

  • Drymon, J.M., M.J. Ajemian, and S.P. Powers. 2014. Distribution and dynamic habitat use of young bull sharks Carcharhinus leucas in a highly stratified northern Gulf of Mexico estuary. PLoS ONE 9: 1–12.

    Article  CAS  Google Scholar 

  • Fecher, B., and S. Friesike. 2014. Open science: One term, five schools of thought. In Opening science, ed. S. Bartling and S. Friesike, 17–47. Cham: Springer.

    Chapter  Google Scholar 

  • Fonseca, V.F., F. Susana, B. Duarte, I. Caçador, H.N. Cabral, C.L. Mieiro, J.P. Coelho, E. Pereira, and P. Reis-Santos. 2019. Spatial variation in mercury bioaccumulation and magnification in a temperate estuarine food web. Frontiers in Marine Science 6: 117.

    Article  Google Scholar 

  • Foster, N.R., B.M. Gillanders, A.R. Jones, J.M. Young, and M. Waycott. 2020. A muddy time capsule: Using sediment environmental DNA for the long-term monitoring of coastal vegetated ecosystems. Marine and Freshwater Research 71 (8): 869–876.

    Article  Google Scholar 

  • Freimuth, E.J., A.F. Diefendorf, T.V. Lowell, and G.C. Wiles. 2019. Sedimentary n-alkanes and n-alkanoic acids in a temperate bog are biased toward woody plants. Organic Chemistry 128: 94–107.

    CAS  Google Scholar 

  • Furey, N.B., M.A. Dance, and J.R. Rooker. 2013. Fine-scale movements and habitat use of juvenile southern flounder Paralichthys lethostigma in an estuarine seascape. Journal of Fish Biology 82 (5): 1469–1483.

    Article  CAS  Google Scholar 

  • Galvan, K., J.W. Fleeger, B. Peterson, D. Drake, L.A. Deegan, and D.S. Johnson. 2011. Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology 410: 1–11.

    Article  CAS  Google Scholar 

  • Garwood, J.A., D.M. Allen, M.E. Kimball, and K.M. Boswell. 2019. Site fidelity and habitat use by young-of-the-year transient fishes in salt marsh intertidal creeks. Estuaries and Coasts 42 (5): 1387–1396.

    Article  Google Scholar 

  • Gilby, B.L., M.P. Weinstein, R. Baker, J. Cebrian, S.B. Alford, A. Chelsky, D. Colombano, R.M. Connolly, C.A. Currin, I.C. Feller, A. Frank, J.A. Goeke, L.A.G. Gaines, F.E. Hardcastle, C.J. Henderson, C.W. Martin, A.E. McDonald, B.H. Morison, A.D. Olds, J.S. Rehage, N.J. Waltham, and S.L. Ziegler. 2020. Human actions alter tidal marsh seascapes and the provision of ecosystem services. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00830-0.

  • Glasgow, H.B., J.M. Burkholder, R.E. Reed, A.J. Lewitus, and J.E. Kleinman. 2004. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. Journal of Experimental Marine Biology and Ecology 300 (1-2): 409–448.

    Article  Google Scholar 

  • Griffin, L.P., J.W. Brownscombe, A.J. Adams, R.E. Boucek, J.T. Finn, M.R. Heithaus, J.S. Rehage, S.J. Cooke, and A.J. Danylchuk. 2018. Keeping up with the silver king: Using cooperative acoustic telemetry networks to quantify the movements of Atlantic tarpon (Megalops atlanticus) in the coastal waters of the southeastern United States. Fisheries Research 205: 65–76.

    Article  Google Scholar 

  • Grothues, T.M., K.W. Able, and J.H. Pravatiner. 2012. Winter flounder (Pseudopleuronectes americanus Walbaum) burial in estuaries: Acoustic telemetry triumph and tribulation. Journal of Experimental Marine Biology and Ecology 438: 125–136.

    Article  Google Scholar 

  • Hampton, S.E., S.S. Anderson, S.C. Bagby, C. Gries, X. Han, E.M. Hart, M.B. Jonwa, W.C. Lenhardt, A. MacDonald, W.K. Michener, J. Mudge, A. Pourmokhtarian, M.P. Schildhauer, K.H. Woo, and N. Zimmerman. 2015. The Tao of open science for ecology. Ecosphere 6 (7): 1–13.

    Article  Google Scholar 

  • Harris, J.M., W.R. James, J.S. Lesser, J.C. Doerr, and J.A. Nelson. 2020. Foundation species shift alters the energetic landscape of marsh nekton. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00852-8.

  • Haulsee, D.E., M.W. Breece, D.C. Miller, B.M. Wetherbee, D.A. Fox, and M.J. Oliver. 2015. Habitat selection of a coastal shark species estimated from an autonomous underwater vehicle. Marine Ecology Progress Series 528: 277–288.

    Article  Google Scholar 

  • Hering, D.K., D.L. Bottom, E.F. Prentice, K.K. Jones, and I.A. Fleming. 2010. Tidal movements and residency of subyearling Chinook salmon (Oncorhynchus tshawytscha) in an Oregon salt marsh channel. Canadian Journal of Fisheries and Aquatic Sciences 67 (3): 524–533.

    Article  Google Scholar 

  • Hochachka, W.M., R. Caruana, D. Fink, A.R.T. Munson, M. Riedewald, D. Sorokina, and S. Kelling. 2007. Data-mining discovery of pattern and process in ecological systems. The Journal of Wildlife Management 71 (7): 2427–2437.

    Article  Google Scholar 

  • Hussey, N.E., S.T. Kessel, K. Aarestrup, S.J. Cooke, P.D. Cowley, A.T. Fisk, R.G. Harcourt, K.N. Holland, S.J. Iverson, J.F. Kocik, J.E.M. Flemming, and F.G. Whoriskey. 2015. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348 (6240): 1255642.

    Article  CAS  Google Scholar 

  • Jaud, M., F. Grasso, N. Le Dantec, R. Verney, C. Delacourt, J. Anmann, J. Deloffre, and P. Grandjean. 2016. Potential of UAVs for monitoring mudflat morphodynamics (application to the Seine estuary, France). International Journal of Geo-Information 5 (4): 50.

    Article  Google Scholar 

  • Johnson, J.J., J.A. Olin, and M.J. Polito. 2019. A multi-biomarker approach supports the use of compound-specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer. Rapid Communications in Mass Spectrometry 33 (23): 1781–1791.

    Article  CAS  Google Scholar 

  • Jones, T.R., C.J. Henderson, A.D. Olds, R.M. Connolly, T.A. Schlacher, B.J. Hourigan, L.A.G. Gaines, and B.L. Gilby. 2020. The mouths of estuaries are key transition zones that concentrate the ecological effects of predators. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00862-6.

  • Kalacska, M., G.L. Chmura, O. Lucanus, D. Bérubé, and J.P. Arroyo-Mora. 2017. Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sensing of Environment 199: 14–24.

    Article  Google Scholar 

  • Kelaher, B.P., A.P. Colefax, A. Tagilafico, M.J. Bishop, A. Giles, and P.A. Butcher. 2019. Assessing variation in assemblages of large marine fauna off ocean beaches using drones. Marine and Freshwater Research 71 (1): 68–77.

    Article  Google Scholar 

  • Kimball, M.E., and M.M. Mace III. 2020. Survival, growth, and tag retention in salt marsh fishes implanted with passive integrated transponder (PIT) tags. Estuaries and Coasts 43 (1): 151–160.

    Article  Google Scholar 

  • Kimball, M.E., K.M. Boswell, and L.P. Rozas. 2017. Estuarine fish behavior around slotted water control structures in a managed salt marsh. Wetlands Ecology and Management 25 (3): 299–312.

    Article  CAS  Google Scholar 

  • Konovalov, D.A., A. Saleh, M. Bradley, M. Sankupellay, S. Marini, and M. Sheaves. 2019. Underwater fish detection with weak multi-domain supervision, 1–8. Budapest, Hungary: International Joint Conference on Neural Networks (IJCNN).

    Google Scholar 

  • Lankowicz, K.M., H. Bi, D. Liang, and C. Fan. 2020. Sonar imaging surveys fill data gaps in forage fish populations in shallow estuarine tributaries. Fisheries Research 226: 105520.

    Article  Google Scholar 

  • Layman, C.A., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D.M. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews 87 (3): 545–562.

    Article  Google Scholar 

  • Lesser, J.S., W.R. James, C.D. Stallings, R.M. Wilson, and J.A. Nelson. 2020. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos 129 (9): 1303–1313.

    Article  Google Scholar 

  • Lieschke, J.A., J.C. Dean, and A. Pickworth. 2019. Extending the effectiveness of electrofishing to estuarine habitats: Laboratory and field assessments. Transactions of the American Fisheries Society 148 (3): 584–591.

    Article  Google Scholar 

  • Lopes, C.L., R. Mendes, I. Cacador, and J.M. Dias. 2019. Evaluation of long-term estuarine vegetation changes through Landsat imagery. Science of the Total Environment 653 (25): 512–522.

    Article  CAS  Google Scholar 

  • Lopez-Marcano, S., C.J. Brown, M. Sievers, and R.M. Connolly. 2021. The slow rise of technology: Computer vision techniques in fish population connectivity. Aquatic Conservation: Marine and Freshwater Ecosystems 31 (1): 210–217.

    Article  Google Scholar 

  • Mallet, D., and D. Pelletier. 2014. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012). Fisheries Research 154: 44–62.

    Article  Google Scholar 

  • Martignac, F., A. Daroux, J.L. Bagliniere, D. Ombredane, and J. Guillard. 2015. The use of acoustic cameras in shallow waters: New hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish and Fisheries 16 (3): 486–510.

    Article  Google Scholar 

  • Matso, K., G.E. Moore, M.R. Routhier, and D.M. Burdick. 2019. Great Bay Estuary 2019 Drone Program for Remote Sensing of Estuarine Habitats Quality Assurance Project Plan. PREP Reports & Publications 430 (https://scholars.unh.edu/prep/430). Accessed April 2020.

  • Middelburg, J.J. 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11 (8): 2357–2371.

    Article  Google Scholar 

  • Morris, B.D., Coco, G., Bryan, K.R., and Turner, I.L. 2007. Video-derived mapping of estuarine evolution. Journal of Coastal Research SI(50): 410–414.

  • Moulton, D.L., M.A. Dance, J.A. Williams, M.Z. Sluis, G.W. Stunz, and J.R. Rooker. 2017. Habitat partitioning and seasonal movement of red drum and spotted seatrout. Estuaries and Coasts 40 (3): 905–916.

    Article  Google Scholar 

  • Nelson, J.A., L. Deegan, and R. Garritt. 2015. Drivers of spatial and temporal variability in estuarine food webs. Marine Ecology Progress Series 533: 67–77.

    Article  CAS  Google Scholar 

  • Nguyen, V.M., Young, N., Brownscombe, J.W., and Cooke, S.J. 2019. Collaboration and engagement produce more actionable science: quantitatively analyzing uptake of fish tracking studies. Ecological Applications 29(6): e01943.

  • Olden, J.D., J.J. Lawler, and N.L. Poff. 2008. Machine learning methods without tears: A primer for ecologists. The Quarterly Review of Biology 83 (2): 171–193.

    Article  Google Scholar 

  • Pajares, H. 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetry Engineering Remote Sensing 81 (4): 281–329.

    Article  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18 (1): 293–320.

    Article  Google Scholar 

  • Rapinel, S., B. Clément, S. Magnanon, V. Sellin, and L. Hubert-Moy. 2014. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image. Journal of Environmental Management 144: 236–246.

    Article  Google Scholar 

  • Raposa, K.B., R.L. Weber, M.C. Ekberg, and W. Ferguson. 2017. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries and Coasts 40 (3): 640–650.

    Article  CAS  Google Scholar 

  • Roegner, G.C., A.M. Coleman, A.B. Borde, J.D. Tagestad, R. Erdt, J. Aga, S.A. Zimmerman, and C. Cole. 2019. Quantify restoration of juvenile salmon habitat with hyperspectral imaging from an unmanned aircraft system. Report of research from Northwest Fisheries Science Center to Office of Oceanic and Atmospheric Research 65pp.

  • Rozas, L.P., and T.J. Minello. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection. Estuaries 20 (1): 199–213.

    Article  Google Scholar 

  • Rudershausen, P.J., J.A. Buckel, T. Dubreuil, M.O. Donnell, J.E. Hightower, S.J. Poland, and B.H. Letcher. 2014. Estimating movement and survival rates of a small saltwater fish using autonomous antenna receiver arrays and passive integrated transponder tags. Marine Ecology Progress Series 499: 177–192.

    Article  Google Scholar 

  • Ruppert, K.M., R.J. Kline, and M.S. Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547.

    Article  Google Scholar 

  • Santos, R.O., D. Lirman, S.J. Pittman, and J.E. Serafy. 2018. Spatial patterns of seagrasses and salinity regimes interact to structure marine faunal assemblages in a subtropical bay. Marine Ecology Progress Series 594: 21–38.

    Article  Google Scholar 

  • Stehfest, K.M., J.M. Lyle, and J.M. Semmens. 2015. The use of acoustic accelerometer tags to determine seasonal changes in activity and catchability of a recreationally caught marine teleost. ICES Journal of Marine Science 72 (8): 2512–2520.

    Article  Google Scholar 

  • Stevenson, C.F., S.G. Hinch, A.D. Porter, E.L. Rechisky, D.W. Welch, S.J. Healy, A.G. Lotto, and N.B. Furey. 2019. The influence of smolt age on freshwater and early marine behavior and survival of migrating juvenile sockeye salmon. Transactions of the American Fisheries Society 148 (3): 636–651.

    Article  Google Scholar 

  • Taylor, M.D., and A. Ko. 2011. Monitoring acoustically tagged king prawns Penaeus (Melicertus) plebejus in an estuarine lagoon. Marine Biology 158 (4): 835–844.

    Article  Google Scholar 

  • Taylor, M.D., R.C. Babcock, C.A. Simpfendorfer, and D.A. Crook. 2017. Where technology meets ecology: Acoustic telemetry in contemporary Australian aquatic research and management. Marine and Freshwater Research 68 (8): 1397–1402.

    Article  Google Scholar 

  • Teichert, N., A. Borja, G. Chust, A. Uriarte, and M. Lepage. 2016. Restoring fish ecological quality in estuaries: Implication of interactive and cumulative effects among anthropogenic stressors. Science of the Total Environment 542 (Part A): 383–393.

    Article  CAS  Google Scholar 

  • Temple, N.A., B.M. Webb, E.L. Sparks, and A.C. Linhoss. 2020. Low-cost pressure gauges for measuring water waves. Journal of Coastal Research 36 (3): 661–667.

    Article  Google Scholar 

  • Tibbetts, J.H. 2017. Making moves. BioScience 67 (1): 7–13.

    Article  Google Scholar 

  • Ventura, D., M. Bruno, G.J. Lasinio, A. Belluscio, and G. Ardizzone. 2016. A low cost-drone based application for identifying and monitoring coastal fish nursery grounds. Estuarine Coastal and Shelf Science 171: 85–98.

    Article  Google Scholar 

  • Waltham, N.J., C. Alcott, M.A. Bareau, J. Cebrian, R.M. Connolly, L.A. Deegan, K. Dodds, L.A. Goodridge-Gaines, B.L. Gilby, C.J. Henderson, C.M. McLuckie, T.J. Minello, J.S. Norris, J. Ollerhead, J. Pahl, J.F. Reinhardt, R.J. Rezek, C.A. Simenstad, J.A.M. Smith, E.L. Sparks, L.W. Staver, S.L. Ziegler, and M.P. Weinstein. 2021. Tidal marsh restoration optimism in a changing climate and urbanizing seascape. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00875-1.

  • Warry, F.Y., P. Reich, J.S. Hindell, J. McKenzie, and A. Pickworth. 2013. Using new electrofishing technology to amp-up fish sampling in estuarine habitats. Journal of Fish Biology 82 (4): 1119–1137.

    Article  CAS  Google Scholar 

  • Weinstein, M.P., and D.A. Kreeger. 2000. Concepts and controversies in tidal marsh ecology. Dordrecht, Netherlands: Kluwer Academic Publishers 875pp.

    Book  Google Scholar 

  • Whipple, A.C., R.A. Luettich, J.V. Reynolds-Fleming, and R.H. Neve. 2018. Spatial differences in wind-driven sediment resuspension in a shallow, coastal estuary. Estuarine Coastal and Shelf Science 213: 49–60.

    Article  CAS  Google Scholar 

  • Whitney, N.M., C.F. White, A.C. Gleiss, G.D. Schwieterman, P. Anderson, R.E. Hueter, and G.B. Skomal. 2016. A novel method for determining post-release mortality, behavior, and recovery period using acceleration data loggers. Fisheries Research 183: 210–221.

    Article  Google Scholar 

  • Ziegler, S.L., R. Baker, S.C. Crosby, C. Alcott, M.A. Barbeau, J. Cebrián, D.D. Colombano, R.M. Connolly, L.A. Deegan, A. Frank, B. Gilby, D. Mallick, C.W. Martin, J.A. Nelson, J. Reinhardt, C.A. Simenstad, N. Waltham, T. Worthington, P. Zu Ermgassen, and L.P. Rozas. 2021. Geographic variation in salt marsh structure and function: Finding commonality across multiple scales. Estuaries and Coasts. https://doi.org/10.1007/s12237-020-00894-y.

  • Zou, K., J. Chen, H. Ruan, Z. Li, W. Guo, M. Li, and L. Liu. 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River estuary compared to bottom trawling. Science of the Total Environment 702: 134704.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Kimball.

Ethics declarations

Conflict of Interest

This perspective arose from a meeting held at the Dauphin Island Sea Lab (DISL) 1–3 November 2019 as part of the Coastal and Estuarine Research Federation (CERF) 2019 Conference Workshop Program. The meeting was funded by grants to R. Baker from the University of South Alabama and DISL, and sponsorship from Mississippi-Alabama-, Georgia-, and Washington-Sea Grants, the Grand Bay National Estuarine Research Reserve, the DISL Foundation, and CERF. RMC is supported by the Global Wetlands Project. NJW is funded by Australian Government National Environmental Science Program Tropical Water Quality Hub. TAW was supported by an anonymous grant to The Nature Conservancy.

Additional information

Communicated by Kenneth L. Heck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimball, M.E., Connolly, R.M., Alford, S.B. et al. Novel Applications of Technology for Advancing Tidal Marsh Ecology. Estuaries and Coasts 44, 1568–1578 (2021). https://doi.org/10.1007/s12237-021-00939-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00939-w

Keywords

Navigation