Skip to main content
Log in

Erasure correction-based CSMA/CA

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

It is well known that the performance of carrier sense multiple access with collision avoidance (CSMA/CA) is poor when the number of users increases, because of collisions. In this paper, we consider a modified version of CSMA/CA based on erasure codes at the packet level, which significantly reduces the complexity of the decoding and does not require any change in the underlying physical layer. In order to improve the performance, we use non-binary maximum distance separable (MDS) codes. We give analytical derivation of the global goodput and show that there is a trade-off between the code parameters and the length of the contention window in order to maximize the global goodput for a given number of users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. That is to say the useful part (information) of the global throughput; the code rate is taken into account.

References

  1. Abramson N (1994) Multiple access in wireless digital networks. Proc IEEE 82(9):1360–1370

    Article  Google Scholar 

  2. Cassini E, Gaudenzi RD, del Rio Herrero O (2007) Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access scheme for satellite access packet networks. IEEE Trans Wirel Commun 6 (4):1408–1419

    Article  Google Scholar 

  3. Liva G (2011) Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Trans Commun 59(2):477–487

    Article  Google Scholar 

  4. Paolini E, Liva G, Chiani M (2011) High throughput random access via codes on graphs: coded slotted ALOHA. In: Proceedings of 2011 IEEE international conference communications (ICC), pp 1–6

  5. Stockhammer T, Shokrollahi A, Watson M, Luby M, Gasiba T (2009) Application layer forward error correction for mobile multimedia broadcasting, Digital Fountain, Tech. Rep. 80-D9741-1 Rev. A

  6. Byers J, Luby M, Mitzenmacher M (2002) A digital fountain approach to asynchronous reliable multicast. IEEE J on Selected Areas in Communications (JSAC) 20(8):1528–1540

    Article  Google Scholar 

  7. Chong Z, Goi B, Ohsaki H, Ng C, Ewe H (2012) Design of short-length message Fountain code for erasure channel transmission. In: IEEE conference sustainable utilization and development in engineering and technology (STUDENT), pp 239–241

  8. Cooper C (2000) On the distribution of rank of a random matrix over a finite field. Random Structures and Algorithms 17:197– 212

    Article  MathSciNet  MATH  Google Scholar 

  9. Studholme C, Blake I (2010) Random matrices and codes for the erasure channel. Algorithmica 56 (4):605–620

    Article  MathSciNet  MATH  Google Scholar 

  10. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J on Selected Areas in Communications (JSAC) 18(3):535–547

    Article  Google Scholar 

  11. Reed I, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Indust Appl Math 8:300–304

    Article  MathSciNet  MATH  Google Scholar 

  12. Huffman W, Pless V (2003) Fundamentals of error correcting codes. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Pishro-Nik H, Fekri F (2004) On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans Inf Theory 50(3):439–454

    Article  MathSciNet  MATH  Google Scholar 

  14. Burshtein D, Miller G (2004) An efficient maximum likelihood decoding of LDPC codes over the binary erasure channel. IEEE Trans Inf Theory 50(11):2837–2844

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar D, Chahed T, Altman E (2009) Analysis of a Fountain code based transport in an 802.11 WLAN cell. In: Proceedings of the IEEE International Teletraffic Congress

  16. Molnár S, Móczár Z, Temesváry A, Sonkoly B, Solymos S, Csiscsics T (2013) Data transfer paradigms for future networks: Fountain coding or congestion control?. In: Proceedings of the IFIP NETWORKING

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Tortelier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortelier, P., Le Ruyet, D. Erasure correction-based CSMA/CA. Ann. Telecommun. 72, 653–660 (2017). https://doi.org/10.1007/s12243-017-0606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-017-0606-3

Keywords

Navigation