Skip to main content

Advertisement

Log in

The Role of Host Cytoskeleton in Flavivirus Infection

  • Review
  • Published:
Virologica Sinica

Abstract

The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intracellular transport, replication, and egress process, although many detailed mechanisms are still unclear. This article provides a brief overview of the function of the most prominent flaviviruses-induced or -hijacked cytoskeletal structures including actin, microtubules and intermediate filaments, mainly focus on infection by dengue virus, Zika virus and West Nile virus. We suggest that virus interaction with host cytoskeleton to be an interesting area of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acosta EG, Castilla V, Damonte EB (2008) Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89:474–484

    Article  CAS  Google Scholar 

  • Alcantara D, O’Driscoll M (2014) Congenital microcephaly. Am J Med Genet C Semin Med Genet 166C:124–139

    Article  Google Scholar 

  • Al-Obaidi MMJ, Bahadoran A, Wang SM, Manikam R, Raju CS, Sekaran SD (2018) Disruption of the blood brain barrier is vital property of neurotropic viral infection of the central nervous system. Acta Virol 62:16–27

    Article  CAS  Google Scholar 

  • Ayala-Nunez NV, Hoornweg TE, van de Pol DP, Sjollema KA, Flipse J, van der Schaar HM, Smit JM (2016) How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Sci Rep 6:28768

    Article  Google Scholar 

  • Barreto-Vieira DF, Jácome FC, da Silva MAN, Caldas GC, de Filippis AMB, de Sequeira PC, de Souza EM, Andrade AA, Manso PPA, Trindade GF, Lima SMB, Barth OM (2017) Structural investigation of C6/36 and Vero cell cultures infected with a Brazilian Zika virus. PLoS ONE 12:e0184397

    Article  Google Scholar 

  • Bekerman E, Einav S (2015) Infectious disease. Combating emerging viral threats. Science 348:282–283

    Article  CAS  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  Google Scholar 

  • Bily T, Palus M, Eyer L, Elsterova J, Vancova M, Ruzek D (2015) Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci Rep 5:10745

    Article  Google Scholar 

  • Blazquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martin-Acebes MA (2013) Infection with Usutu virus induces an autophagic response in mammalian cells. PLoS Negl Trop Dis 7:e2509

    Article  Google Scholar 

  • Brault JB, Kudelko M, Vidalain PO, Tangy F, Despres P, Pardigon N (2011) The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication. Virology 417:369–378

    Article  CAS  Google Scholar 

  • Chee HY, AbuBakar S (2004) Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem Biophys Res Commun 320:11–17

    Article  CAS  Google Scholar 

  • Chen W, Gao N, Wang JL, Tian YP, Chen ZT, An J (2008) Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process. Arch Virol 153:1777–1781

    Article  CAS  Google Scholar 

  • Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, Wang JJ (2003) Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol 84:2795–2805

    Article  CAS  Google Scholar 

  • Chu JJ, Ng ML (2002) Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67:127–136

    CAS  PubMed  Google Scholar 

  • Chu JJ, Ng ML (2004) Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555

    Article  CAS  Google Scholar 

  • Chu JJ, Choo BG, Lee JW, Ng ML (2003) Actin filaments participate in West Nile (Sarafend) virus maturation process. J Med Virol 71:463–472

    Article  CAS  Google Scholar 

  • Chu JJ, Leong PW, Ng ML (2006) Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology 349:463–475

    Article  CAS  Google Scholar 

  • Chuang CK, Yang TH, Chen TH, Yang CF, Chen WJ (2015) Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells. J Gen Virol 96:793–803

    Article  CAS  Google Scholar 

  • Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, Haselmann U, Funaya C, Schieber N, Ronchi P, Schorb M, Pruunsild P, Schwab Y, Chatel-Chaix L, Ruggieri A, Bartenschlager R (2017) Ultrastructural characterization of Zika virus replication factories. Cell Rep 18:2113–2123

    Article  CAS  Google Scholar 

  • Coyaud E, Ranadheera C, Cheng D, Gonçalves J, Dyakov BJA, Laurent EMN, St-Germain J, Pelletier L, Gingras AC, Brumell JH, Kim PK, Safronetz D, Raught B (2018) Global interactomics uncovers extensive organellar targeting by Zika virus. Mol Cell Proteom 17:2242–2255

    Article  CAS  Google Scholar 

  • Cuartas-Lopez AM, Hernandez-Cuellar CE, Gallego-Gomez JC (2018) Disentangling the role of PI3 K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res 256:153–165

    Article  CAS  Google Scholar 

  • Cudmore S, Reckmann I, Way M (1997) Viral manipulations of the actin cytoskeleton. Trends Microbiol 5:142–148

    Article  CAS  Google Scholar 

  • Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP (2009) Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog 5:e1000394

    Article  Google Scholar 

  • Decembre E, Assil S, Hillaire ML, Dejnirattisai W, Mongkolsapaya J, Screaton GR, Davidson AD, Dreux M (2014) Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PLoS Pathog 10:e1004434

    Article  Google Scholar 

  • El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, Cartron G, Veas F, Al-Daccak R, Izopet J, Jabrane-Ferrat N (2016) ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep 6:35296

    Article  Google Scholar 

  • Foo KY, Chee HY (2015) Interaction between flavivirus and cytoskeleton during. Virus Replication Biomed Res Int 2015:427814

    PubMed  Google Scholar 

  • Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  CAS  Google Scholar 

  • Fraisier C et al (2013) Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS ONE 8:e68318

    Article  CAS  Google Scholar 

  • Ganapathiraju MK, Karunakaran KB, Correa-Menendez J (2016) Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 5:1919

    Article  Google Scholar 

  • Gerold G, Bruening J, Weigel B, Pietschmann T (2017) Protein Interactions during the flavivirus and hepacivirus life cycle. Mol Cell Proteom 16:S75–S91

    Article  Google Scholar 

  • Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    Article  CAS  Google Scholar 

  • Guzman MG, Kouri G (2003) Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J Clin Virol 27:1–13

    Article  Google Scholar 

  • Hackett BA, Cherry S (2018) Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci USA 115:4246–4251

    Article  CAS  Google Scholar 

  • Henry Sum MS (2015) The involvement of microtubules and actin during the infection of Japanese encephalitis virus in neuroblastoma cell line, IMR32. Biomed Res Int 2015:695283

    Article  Google Scholar 

  • Hou S, Kumar A, Xu ZM, Airo AM, Stryapunina I, Wong CP, Branton W, Tchesnokov E, Götte M, Power C, Hobman TC (2017) Zika virus hijacks stress granule proteins and modulates the host stress response. J Virol pii: JVI.00474-17

  • Jhan MK, Tsai TT, Chen CL, Tsai CC, Cheng YL, Lee YC, Ko CY, Lin YS, Chang CP, Lin LT, Lin CF (2017) Dengue virus infection increases microglial cell migration. Sci Rep 7:91

    Article  Google Scholar 

  • Kalia M, Khasa R, Sharma M, Nain M, Vrati S (2013) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87:148–162

    Article  CAS  Google Scholar 

  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2009) Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res 8:2551–2562

    Article  CAS  Google Scholar 

  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010a) The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res 9:4960–4971

    Article  CAS  Google Scholar 

  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010b) Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release. Mol BioSyst 6:795–806

    Article  CAS  Google Scholar 

  • Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, Wang L, Sengupta R, Sahasrabudhe S, Randall G, Gribskov M, Kuhn RJ, Perera R, LaCount DJ (2011) A physical interaction network of dengue virus and human proteins. Mol Cell Proteom 10(M111):012187

    Google Scholar 

  • Le Breton M, Meyniel-Schicklin L, Deloire A, Coutard B, Canard B, de Lamballerie X, Andre P, Rabourdin-Combe C, Lotteau V, Davoust N (2011) Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11:234

    Article  Google Scholar 

  • Lee JW, Ng ML (2004) A nano-view of West Nile virus-induced cellular changes during infection. J Nanobiotechnol 2:6

    Article  Google Scholar 

  • Lei S et al (2013) ROCK is involved in vimentin phosphorylation and rearrangement induced by dengue virus. Cell Biochem Biophys 67:1333–1342

    Article  CAS  Google Scholar 

  • Liu CC, Zhang YN, Li ZY, Hou JX, Zhou J, Kan L, Zhou B, Chen PY (2017) Rab5 and Rab11 are required for clathrin-dependent endocytosis of Japanese encephalitis virus in BHK-21 cells. J Virol 91.pii:e01113-17

  • Makino Y, Suzuki T, Hasebe R, Kimura T, Maeda A, Takahashi H, Sawa H (2014) Establishment of tracking system for West Nile virus entry and evidence of microtubule involvement in particle transport. J Virol Methods 195:250–257

    Article  CAS  Google Scholar 

  • Medigeshi GR, Hirsch AJ, Streblow DN, Nikolich-Zugich J, Nelson JA (2008) West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin. J Virol 82:5212–5219

    Article  CAS  Google Scholar 

  • Merino-Gracia J, Garcia-Mayoral MF, Rodriguez-Crespo I (2011) The association of viral proteins with host cell dynein components during virus infection. FEBS J 278:2997–3011

    Article  CAS  Google Scholar 

  • Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annu Rev Biochem 81:661–686

    Article  CAS  Google Scholar 

  • Nawa M, Takasaki T, Yamada K, Kurane I, Akatsuka T (2003) Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84:1737–1741

    Article  CAS  Google Scholar 

  • Ng ML (1987) Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J Gen Virol 68(Pt 2):577–582

    PubMed  Google Scholar 

  • Ng ML, Hong SS (1989) Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 protein with microtubules. Arch Virol 106:103–120

    Article  CAS  Google Scholar 

  • Ng ML, Pedersen JS, Toh BH, Westaway EG (1983) Immunofluorescent sites in vero cells infected with the flavivirus Kunjin. Arch Virol 78:177–190

    Article  CAS  Google Scholar 

  • Ng ML, Howe J, Sreenivasan V, Mulders JJ (1994) Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 137:303–313

    Article  CAS  Google Scholar 

  • Nikolay B, Diallo M, Boye CS, Sall AA (2011) Usutu virus in Africa. Vector Borne Zoonotic Dis 11:1417–1423

    Article  Google Scholar 

  • Ploubidou A, Way M (2001) Viral transport and the cytoskeleton. Curr Opin Cell Biol 13:97–105

    Article  CAS  Google Scholar 

  • Potokar M, Korva M, Jorgacevski J, Avsic-Zupanc T, Zorec R (2014) Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability. PLoS ONE 9:e86219

    Article  Google Scholar 

  • Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects-reviewing the evidence for causality. N Engl J Med 374:1981–1987

    Article  CAS  Google Scholar 

  • Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  CAS  Google Scholar 

  • Rossignol ED, Peters KN, Connor JH, Bullitt E (2017) Zika virus induced cellular remodelling. Cell Microbiol. https://doi.org/10.1111/cmi.12740

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruzek D, Vancova M, Tesarova M, Ahantarig A, Kopecky J, Grubhoffer L (2009) Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol 90:1649–1658

    Article  CAS  Google Scholar 

  • Shrivastava N, Sripada S, Kaur J, Shah PS, Cecilia D (2011) Insights into the internalization and retrograde trafficking of Dengue 2 virus in BHK-21 cells. PLoS ONE 6:e25229

    Article  CAS  Google Scholar 

  • Skruzny M, Brach T, Ciuffa R, Rybina S, Wachsmuth M, Kaksonen M (2012) Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc Natl Acad Sci USA 109:E2533–E2542

    Article  CAS  Google Scholar 

  • Soe HJ, Yong YK, Al-Obaidi MMJ, Raju CS, Gudimella R, Manikam R, Sekaran SD (2018) Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray. Medicine (Baltimore) 97:e9713

    Article  CAS  Google Scholar 

  • Taylor MP, Koyuncu OO, Enquist LW (2011) Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 9:427–439

    Article  CAS  Google Scholar 

  • Teo CS, Chu JJ (2014) Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol 88:1897–1913

    Article  Google Scholar 

  • Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J (2010) Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 4:e809

    Article  Google Scholar 

  • Wang XJ, Jiang SC, Wei HX, Deng SQ, He C, Peng HJ (2017) The differential expression and possible function of long noncoding RNAs in liver cells infected by dengue virus. Am J Trop Med Hyg 97:1904–1912

    Article  CAS  Google Scholar 

  • Wolf B, Diop F, Ferraris P, Wichit S, Busso C, Misse D, Gonczy P (2017) Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open Biol 7:160231

    Article  Google Scholar 

  • Wu N, Gao N, Fan D, Wei J, Zhang J, An J (2014) miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes Infect 16:911–922

    Article  CAS  Google Scholar 

  • Xu XF, Chen ZT, Gao N, Zhang JL, An J (2009) Myosin Vc, a member of the actin motor family associated with Rab8, is involved in the release of DV2 from HepG2 cells. Intervirology 52:258–265

    Article  CAS  Google Scholar 

  • Xu Z, Waeckerlin R, Urbanowski MD, van Marle G, Hobman TC (2012) West Nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins. PLoS ONE 7:e37886

    Article  CAS  Google Scholar 

  • Xu Q, Cao M, Song H, Chen S, Qian X, Zhao P, Ren H, Tang H, Wang Y, Wei Y, Zhu Y, Qi Z (2016) Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiol 11:1227–1248

    Article  CAS  Google Scholar 

  • Yang J, Zou L, Hu Z, Chen W, Zhang J, Zhu J, Fang X, Yuan W, Hu X, Hu F, Rao X (2013) Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells. Microbes Infect 15:310–318

    Article  CAS  Google Scholar 

  • Zamudio-Meza H, Castillo-Alvarez A, Gonzalez-Bonilla C, Meza I (2009) Cross-talk between Rac1 and Cdc42 GTPases regulates formation of filopodia required for dengue virus type-2 entry into HMEC-1 cells. J Gen Virol 90:2902–2911

    Article  CAS  Google Scholar 

  • Zanini F, Pu SY, Bekerman E, Einav S, Quake SR (2018) Single-cell transcriptional dynamics of flavivirus infection. Elife 7:e32942

    Article  Google Scholar 

  • Zhang M, Zheng X, Wu Y, Gan M, He A, Li Z, Zhang D, Wu X, Zhan X (2013) Differential proteomics of Aedes albopictus salivary gland, midgut and C6/36 cell induced by dengue virus infection. Virology 444:109–118

    Article  CAS  Google Scholar 

  • Zhang J, Wu N, Gao N, Yan W, Sheng Z, Fan D, An J (2016) Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton. Sci China Life Sci 59:487–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Xia Jin (Institut Pasteur of Shanghai, Chinese Academy of Science) for discussions and critical reading of the manuscript. This work was supported by Collaborative Research Grant (KLMVI-OP-201904) of CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, and the starting Grant of Institut Pasteur of Shanghai (1185170000), Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Jiu.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, W., Li, J. et al. The Role of Host Cytoskeleton in Flavivirus Infection. Virol. Sin. 34, 30–41 (2019). https://doi.org/10.1007/s12250-019-00086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-019-00086-4

Keywords

Navigation