Skip to main content

Advertisement

Log in

The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice

  • Research Article
  • Published:
Virologica Sinica

Abstract

Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues. The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) suppressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, Shin HS, Brooks SF, Knight HL, Eichbaum Q, Yang YG, Sykes M, Walker BD, Freeman GJ, Pillai S, Westmoreland SV, Brander C, Luster AD, Tager AM (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83:7305–7321

    Article  CAS  Google Scholar 

  • Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM, Berger EA, Zack JA (2003) Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19:413–423

    Article  CAS  Google Scholar 

  • Chung YS, Son JK, Choi B, Joo SY, Lee YS, Park JB, Moon H, Kim TJ, Kim SH, Hong S, Chang J, Kang MS, Kim SJ (2015) Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rgamma(null) mice optimizes humanized mice that mount adaptive antibody responses. Clin Immunol 157:156–165

    Article  CAS  Google Scholar 

  • Covassin L, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, Brehm MA (2013) Human immune system development and survival of non-obese diabetic (NOD)-SCID IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 174:372–388

    Article  CAS  Google Scholar 

  • Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE (2009) A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 83:9247–9257

    Article  CAS  Google Scholar 

  • Evans DT, Silvestri G (2013) Nonhuman primate models in aids research. Curr Opin HIV AIDS 8:255–261

    PubMed  PubMed Central  Google Scholar 

  • Ganick DJ, Sarnwick RD, Shahidi NT, Manning DD (1980) Inability of intravenously injected monocellular suspensions of human bone marrow to establish in the nude mouse. Int Arch Allergy Appl Immunol 62:330–333

    Article  CAS  Google Scholar 

  • Gruell H, Klein F (2017) Progress in HIV-1 antibody research using humanized mice. Curr Opin HIV AIDS 12:285–293

    Article  CAS  Google Scholar 

  • Hessell AJ, Haigwood NL (2015) Animal models in HIV-1 protection and therapy. Curr Opin HIV AIDS 10:170–176

    Article  CAS  Google Scholar 

  • Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia JV (2013) HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. Retrovirology 10:121

    Article  CAS  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573

    Article  CAS  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  CAS  Google Scholar 

  • Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D, Barbour S, Kovalev GI, Unutmaz D, Su L (2008) Foxp3 + CD4 + regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2–/–gammac–/– mice in vivo. Blood 112:2858–2868

    Article  CAS  Google Scholar 

  • Kim KC, Choi BS, Kim KC, Park KH, Lee HJ, Cho YK, Kim SI, Kim SS, Oh YK, Kim YB (2016) A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retrovir 32:194–202

    Article  CAS  Google Scholar 

  • King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, Atkinson MA, Wasserfall C, Herold KC, Woodland RT, Schmidt MR, Woda BA, Thompson MJ, Rossini AA, Greiner DL (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-SCID mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126:303–314

    Article  CAS  Google Scholar 

  • Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, Piatak M Jr, Mellors JW, Lifson JD, Ambrose Z (2013) Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model. PLoS ONE 8:e84275

    Article  CAS  Google Scholar 

  • Kumar N, Chahroudi A, Silvestri G (2016) Animal models to achieve an HIV cure. Curr Opin HIV AIDS 11:432–441

    Article  CAS  Google Scholar 

  • Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492

    Article  CAS  Google Scholar 

  • Li C, Wang HB, Kuang WD, Ren XX, Song ST, Zhu HZ, Li Q, Xu LR, Guo HJ, Wu L, Wang JH (2017) Naf1 regulates HIV-1 latency by suppressing viral promoter-driven gene expression in primary CD4+ T cells. J Virol 91:e01830-16

    Article  Google Scholar 

  • Lu W, Mehraj V, Vyboh K, Cao W, Li T, Routy JP (2015) CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc 18:20052

    Article  CAS  Google Scholar 

  • Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, Bristol G, An DS, Zack JA (2012) HIV latency in the humanized BLT mouse. J Virol 86:339–347

    Article  CAS  Google Scholar 

  • McBride JA, Striker R (2017) Imbalance in the game of T cells: what can the CD4/CD8 T-cell ratio tell us about HIV and health? PLoS Pathog 13:e1006624

    Article  CAS  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  CAS  Google Scholar 

  • McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200

    Article  CAS  Google Scholar 

  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  CAS  Google Scholar 

  • Nixon CC, Mavigner M, Silvestri G, Garcia JV (2017) In vivo models of human immunodeficiency virus persistence and cure strategies. J Infect Dis 215:S142–S151

    Article  CAS  Google Scholar 

  • Satheesan S, Li H, Burnett JC, Takahashi M, Li S, Wu SX, Synold TW, Rossi JJ, Zhou J (2018) HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. J Virol 92:e02118-17

    Article  Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    PubMed  CAS  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  Google Scholar 

  • Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2–/–gamma(c)–/–mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A 108:13218–13223

    Article  Google Scholar 

  • Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, Melkus MW, Padgett-Thomas A, Zupancic M, Haase AT, Garcia JV (2007) Intrarectal transmission, systemic infection, and CD4 + T cell depletion in humanized mice infected with HIV-1. J Exp Med 204:705–714

    Article  CAS  Google Scholar 

  • Wu X, Liu L, Cheung KW, Wang H, Lu X, Cheung AK, Liu W, Huang X, Li Y, Chen ZW, Chen SM, Zhang T, Wu H, Chen Z (2016) Brain invasion by CD4(+) T cells infected with a transmitted/founder HIV-1BJZS7 during acute stage in humanized mice. J Neuroimmune Pharmacol 11:572–583

    Article  Google Scholar 

  • Ye C, Wang W, Cheng L, Li G, Wen M, Wang Q, Zhang Q, Li D, Zhou P, Su L (2017) Glycosylphosphatidylinositol-anchored anti-HIV scFv efficiently protects CD4 T cells from HIV-1 infection and deletion in hu-PBL mice. J Virol 91:e10389-16

    Google Scholar 

  • Zhang L, Su L (2012) Hiv-1 immunopathogenesis in humanized mouse models. Cell Mol Immunol 9:237–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants to JHW from the National Grant Program on Key Infectious Disease (2018ZX10301101-003-002), the Natural Science Foundation of China (NSFC, 81572001, 81873965), the key project from Chinese Academy of Sciences (QYZDB-SSW-SMC059), and grant to WWS from NSFC (31800152). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TJF, LS and WWS conceived the experiments, designed the experimental flow and performed the experiments. TJF performed statistical analyses. TJF, WWS and JHW wrote the manuscript. TJF, XGY and XJ reviewed the manuscript. WWS and JHW supervised the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei-Wei Sun or Jian-Hua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

All procedures were conducted in compliance with a protocol approved by the Institutional Animal Care and Use Committee at Institut Pasteur of Shanghai. All experiments were performed in accordance with relevant guidelines and regulations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, TJ., Sun, L., Yang, XG. et al. The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice. Virol. Sin. 35, 417–425 (2020). https://doi.org/10.1007/s12250-019-00181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-019-00181-6

Keywords

Navigation