Skip to main content

Advertisement

Log in

Programmed Death Ligand-1 on Microglia Regulates Th1 Differentiation via Nitric Oxide in Experimental Autoimmune Encephalomyelitis

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Microglia are considered to be potential antigen-presenting cells and have the ability to present antigen under pathological conditions. Nevertheless, whether and how microglia are involved in immune regulation are largely unknown. Here, we investigated the suppressive activity of microglia during experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein, with the goal of understanding their role in regulating the T cell reaction. Using flow cytometric analysis, we found that microglia were characterized by increased cell number and up-regulated programmed death ligand-1 (PD-L1) at the peak phase of EAE. Meanwhile, both the CD4+ T cells and microglia that infiltrated the central nervous system expressed higher levels of PD1, the receptor for PD-L1, accompanied by a decline of Th1 cells. In an ex vivo co-culture system, microglia from EAE mice inhibited the proliferation of antigen-specific CD4+ T cells and the differentiation of Th1 cells, and this was significantly inhibited by PD-L1 blockade. Further, microglia suppressed Th1 cells via nitric oxide (NO), the production of which was dependent on PD-L1. Thus, these data suggest a scenario in which microglia are involved in the regulation of EAE by suppressing Th1-cell differentiation via the PD-L1-NO pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc 2006, 1: 1810–1819.

    Article  CAS  PubMed  Google Scholar 

  2. Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 2010, 5: e15531.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Grifka-Walk HM, Giles DA, Segal BM. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Eur J Immunol 2015, 45: 2780–2786.

    Article  CAS  PubMed  Google Scholar 

  4. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, et al. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2008, 181: 3750–3754.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ishigami T, White CA, Pender MP. Soluble antigen therapy induces apoptosis of autoreactive T cells preferentially in the target organ rather than in the peripheral lymphoid organs. Eur J Immunol 1998, 28: 1626–1635.

    Article  CAS  PubMed  Google Scholar 

  6. Seger J, Zorzella-Pezavento SF, Pelizon AC, Martins DR, Domingues A, Sartori A. Decreased production of TNF-alpha by lymph node cells indicates experimental autoimmune encephalomyelitis remission in Lewis rats. Mem Inst Oswaldo Cruz 2010, 105: 263–268.

    Article  CAS  PubMed  Google Scholar 

  7. Cao L, He C. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci Bull 2013, 29: 189–198.

    Article  CAS  PubMed  Google Scholar 

  8. Bhasin M, Wu M, Tsirka SE. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol 2007, 8: 10.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ponomarev ED, Shriver LP, Maresz K, Dittel BN. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005, 81: 374–389.

    Article  CAS  PubMed  Google Scholar 

  10. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 2012, 37: 249–263.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 2013, 19: 595–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003, 304: 1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010, 7: 354–365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132: 288–295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol 2010, 225: 24–28.

    Article  PubMed  Google Scholar 

  16. Almolda B, Gonzalez B, Castellano B. Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J Neuroimmunol 2010, 223: 39–54.

    Article  CAS  PubMed  Google Scholar 

  17. Monsonego A, Imitola J, Zota V, Oida T, Weiner HL. Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to Th1 cells. J Immunol 2003, 171: 2216–2224.

    Article  CAS  PubMed  Google Scholar 

  18. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11: 775–787.

    Article  CAS  PubMed  Google Scholar 

  19. Magnus T, Schreiner B, Korn T, Jack C, Guo H, Antel J, et al. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 2005, 25: 2537–2546.

    Article  CAS  PubMed  Google Scholar 

  20. Jin YH, Hou W, Kang HS, Koh CS, Kim BS. The role of interleukin-6 in the expression of PD-1 and PDL-1 on central nervous system cells following infection with Theiler’s murine encephalomyelitis virus. J Virol 2013, 87: 11538–11551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 2011, 42: 2578–2583.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Yao A, Liu F, Chen K, Tang L, Liu L, Zhang K, et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics 2014, 11: 636–650.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 2003, 100: 5336–5341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang XM, Lund H, Mia S, Parsa R, Harris RA. Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice. Glia 2014, 62: 804–817.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001, 2: 907–916.

    Article  CAS  PubMed  Google Scholar 

  26. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995, 81: 641–650.

    Article  CAS  PubMed  Google Scholar 

  27. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995, 375: 408–411.

    Article  CAS  PubMed  Google Scholar 

  28. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011, 17: 64–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 2006, 108: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  30. Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, et al. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205: 2319–2337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. D’Agostino PM, Kwak C, Vecchiarelli HA, Toth JG, Miller JM, Masheeb Z, et al. Viral-induced encephalitis initiates distinct and functional CD103+ CD11b+ brain dendritic cell populations within the olfactory bulb. Proc Natl Acad Sci USA 2012, 109: 6175–6180.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hesske L, Vincenzetti C, Heikenwalder M, Prinz M, Reith W, Fontana A, et al. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain 2010, 133: 1637–1654.

    Article  PubMed  Google Scholar 

  33. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 2012, 3: 1227.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, Azuma M, et al. Differential role of programmed death-ligand 1 and programmed death-ligand 2 in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 2006, 176: 3480–3489.

    Article  CAS  PubMed  Google Scholar 

  35. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, et al. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 2007, 182: 124–134.

    Article  CAS  PubMed  Google Scholar 

  36. Ortler S, Leder C, Mittelbronn M, Zozulya AL, Knolle PA, Chen L, et al. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol 2008, 38: 1734–1744.

    Article  CAS  PubMed  Google Scholar 

  37. Schreiner B, Bailey SL, Shin T, Chen L, Miller SD. PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol 2008, 38: 2706–2717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McAlees JW, Lajoie S, Dienger K, Sproles AA, Richgels PK, Yang Y, et al. Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur J Immunol 2015, 45: 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Jie HB, Lei Y, Gildener–Leapman N, Trivedi S, Green T, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res 2015, 75: 508–518.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gonzalez-Clemente JM, Martinez-Osaba MJ, Minarro A, Delgado MP, Mauricio D, Ribera F. [Hypovitaminosis D: its high prevalence in elderly outpatients in Barcelona. Associated factors]. Med Clin (Barc) 1999, 113: 641–645.

    CAS  Google Scholar 

  41. Sahrbacher UC, Lechner F, Eugster HP, Frei K, Lassmann H, Fontana A. Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. Eur J Immunol 1998, 28: 1332–1338.

    Article  CAS  PubMed  Google Scholar 

  42. Fenyk-Melody JE, Garrison AE, Brunnert SR, Weidner JR, Shen F, Shelton BA, et al. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol 1998, 160: 2940–2946.

    CAS  PubMed  Google Scholar 

  43. Velez de Mendizabal N, Carneiro J, Sole RV, Goni J, Bragard J, Martinez-Forero I, et al. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst Biol 2011, 5: 114.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Caridade M, Graca L, Ribeiro RM. Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models. Front Immunol 2013, 4: 378.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330: 841–845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Appel SH, Beers DR, Henkel JS. T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 2010, 31: 7–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Murphy AC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 2010, 24: 641–651.

    Article  CAS  PubMed  Google Scholar 

  48. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014, 32: 367–402.

    Article  CAS  PubMed  Google Scholar 

  49. Bailey SL, Schreiner B, McMahon EJ, Miller SD. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 2007, 8: 172–180.

    Article  CAS  PubMed  Google Scholar 

  50. Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 2012, 37: 264–275.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 2004, 5: 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  52. Blank C, Brown I, Marks R, Nishimura H, Honjo T, Gajewski TF. Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. J Immunol 2003, 171: 4574–4581.

    Article  CAS  PubMed  Google Scholar 

  53. Keir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol 2007, 179: 5064–5070.

    Article  CAS  PubMed  Google Scholar 

  54. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010, 236: 219–242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009, 206: 3015–3029.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wei XM, Yang W, Liu LX, Qi WX. Effects of L-arginine and N(omega)-nitro-L-arginine methylester on learning and memory and alpha7 nAChR expression in the prefrontal cortex and hippocampus of rats. Neurosci Bull 2013, 29: 303–310.

    Article  CAS  PubMed  Google Scholar 

  57. Xiong H, Zhu C, Li F, Hegazi R, He K, Babyatsky M, et al. Inhibition of interleukin-12 p40 transcription and NF-kappaB activation by nitric oxide in murine macrophages and dendritic cells. J Biol Chem 2004, 279: 10776–10783.

    Article  CAS  PubMed  Google Scholar 

  58. Giordano D, Magaletti DM, Clark EA. Nitric oxide and cGMP protein kinase (cGK) regulate dendritic-cell migration toward the lymph-node-directing chemokine CCL19. Blood 2006, 107: 1537–1545.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Giordano D, Li C, Suthar MS, Draves KE, Ma DY, Gale M, Jr., et al. Nitric oxide controls an inflammatory-like Ly6C(hi)PDCA1+ DC subset that regulates Th1 immune responses. J Leukoc Biol 2011, 89: 443–455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002, 169: 5538–5545.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81070961, 81273212, 81202308, 81302604, 31300730, 81172882, and 81241052) and the Natural Science Foundation of Shandong Province (ZR2011CM037). We thank Qiuling Zhang for assistance with the maintenance of mice; and Yalin Li and Yingping Xu for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Bai or Hua Tang.

Additional information

Jingxia Hu and Hao He have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., He, H., Yang, Z. et al. Programmed Death Ligand-1 on Microglia Regulates Th1 Differentiation via Nitric Oxide in Experimental Autoimmune Encephalomyelitis. Neurosci. Bull. 32, 70–82 (2016). https://doi.org/10.1007/s12264-015-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-0010-9

Keywords

Navigation