Skip to main content

Advertisement

Log in

TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypertension is the most prevalent chronic disease and a risk factor for various diseases. Although its mechanisms and therapies are constantly being updated and developed, they are still not fully clarified. In recent years, novel gut microbiota and its metabolites have attracted widespread attention. It is strongly linked with physiological and pathological systems, especially TMA and TMAO. TMA is formed by intestinal microbial metabolism of choline and l-carnitine and converted into TMAO by FMO3. This paper collected and collated the latest researches and mainly discussed the following four parts. It introduced gut microbiota; provided a focus on TMA, TMA-producing bacteria, and TMAO; summarized the alternations in hypertensive patients and animals; discussed the mechanisms of TMAO with two respects; and summarized the regulatory factors may be as new interventions and therapies of hypertension. And, more relevant studies are still prospected to be accomplished between hypertension and TMA/TMAO for further clinical services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. GBD. (2015). Risk Factors Collaborators (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388, 1659–1724. https://doi.org/10.1016/S0140-6736(16)31679-8.

    Article  Google Scholar 

  2. Lawes, C. M., Vander Hoorn, S., & Rodgers, A. (2008). International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet, 371, 1513–1518. https://doi.org/10.1016/S0140-6736(08)60655-8.

    Article  PubMed  Google Scholar 

  3. Whelton, P. K., Carey, R. M., & Aronow, W. S. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71, e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

    Article  CAS  PubMed  Google Scholar 

  4. Writing Group Members, Mozaffarian, D., Benjamin, E. J., & Go, A. S. (2016). Stroke Statistics Subcommittee. Executive Summary: Heart Disease and Stroke Statistics—2016 Update: A report from the American Heart Association. Circulation, 133, 447–454. https://doi.org/10.1161/CIR.0000000000000366.

    Article  Google Scholar 

  5. Norlander, A. E., Madhur, M. S., & Harrison, D. G. (2018). The immunology of hypertension. The Journal of Experimental Medicine, 215, 21–33. https://doi.org/10.1084/jem.20171773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurts, C., Panzer, U., Anders, H. J., et al. (2013). The immune system and kidney disease: Basic concepts and clinical implications. Nature Reviews. Immunology, 13, 738–753. https://doi.org/10.1038/nri3523.

    Article  CAS  PubMed  Google Scholar 

  7. Zubcevic, J., Richards, E. M., Yang, T., et al. (2019). Impaired autonomic nervous system-microbiome circuit in hypertension. Circulation Research, 125, 104–116. https://doi.org/10.1161/CIRCRESAHA.119.313965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, H. N., Xu, Q. Q., Thakur, A., et al. (2018). Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sciences, 213, 258–268. https://doi.org/10.1016/j.lfs.2018.10.028.

    Article  CAS  PubMed  Google Scholar 

  9. Amedei, A., & Morbidelli, L. (2019). Circulating metabolites originating from gut microbiota control endothelial cell function. Molecules, 24, 3992. https://doi.org/10.3390/molecules24213992.

    Article  CAS  PubMed Central  Google Scholar 

  10. Chang, C. S., & Kao, C. Y. (2019). Current understanding of the gut microbiota shaping mechanisms. Journal of Biomedical Science, 26, 59. https://doi.org/10.1186/s12929-019-0554-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, W. H., Kitai, T., & Hazen, S. L. (2017). Gut microbiota in cardiovascular health and disease. Circulation Research, 120, 1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gambardella, J., Castellanos, V., & Santulli, G. (2020). Standardizing translational microbiome studies and metagenomic analyses. Cardiovascular Research, cvaa175. https://doi.org/10.1093/cvr/cvaa175.

  13. Jie, Z., Xia, H., Zhong, S. L., et al. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845. https://doi.org/10.1038/s41467-017-00900-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, X. S., Obeid, S., Klingenberg, R., et al. (2017). Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. European Heart Journal, 38, 814–824. https://doi.org/10.1093/eurheartj/ehw582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474, 1823–1836. https://doi.org/10.1042/BCJ20160510.

    Article  CAS  PubMed  Google Scholar 

  16. Shukla, S. D., Budden, K. F., Neal, R., et al. (2017). Microbiome effects on immunity, health and disease in the lung. Clinical & Translational Immunology, 6, e133. https://doi.org/10.1038/cti.2017.6.

    Article  CAS  Google Scholar 

  17. Qin, J., Li, R., Raes, J., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65. https://doi.org/10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arumugam, M., Raes, J., Pelletier, E., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180. https://doi.org/10.1038/nature09944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rinninella, E., Cintoni, M., Raoul, P., et al. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11, 2393. https://doi.org/10.3390/nu11102393.

    Article  CAS  PubMed Central  Google Scholar 

  20. Jandhyala, S. M., Talukdar, R., Subramanyam, C., et al. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21, 8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeisel, S. H., & Warrier, M. (2017). Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annual Review of Nutrition, 37, 157–181. https://doi.org/10.1146/annurev-nutr-071816-064732.

    Article  CAS  PubMed  Google Scholar 

  22. Cho, C. E., & Caudill, M. A. (2017). Trimethylamine-N-oxide: Friend, foe, or simply caught in the cross-fire? Trends in Endocrinology and Metabolism: TEM, 28, 121–130. https://doi.org/10.1016/j.tem.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  23. Razavi, A. C., Potts, K. S., Kelly, T. N., et al. (2019). Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 10, 29. https://doi.org/10.1186/s13293-019-0240-z.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bu, J., & Wang, Z. (2018). Cross-talk between gut microbiota and heart via the routes of metabolite and immunity. Gastroenterology Research and Practice, 2018, 6458094. https://doi.org/10.1155/2018/6458094.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoyles, L., Jiménez-Pranteda, M. L., Chilloux, J., et al. (2018). Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome, 6, 73. https://doi.org/10.1186/s40168-018-0461-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaworska, K., Huc, T., Samborowska, E., et al. (2017). Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One, 12, e0189310. https://doi.org/10.1371/journal.pone.0189310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fennema, D., Phillips, I. R., & Shephard, E. A. (2016). Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 44, 1839–1850. https://doi.org/10.1124/dmd.116.070615.

    Article  CAS  Google Scholar 

  28. Subramaniam, S., & Fletcher, C. (2018). Trimethylamine N-oxide: Breathe new life. British Journal of Pharmacology, 175, 1344–1353. https://doi.org/10.1111/bph.13959.

    Article  CAS  PubMed  Google Scholar 

  29. Jameson, E., Doxey, A. C., Airs, R., et al. (2016). Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems. Microbial Genomics, 2, e000080. https://doi.org/10.1099/mgen.0.000080.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pham, Q. D., Wolde-Kidan, A., Gupta, A., et al. (2018). Effects of urea and TMAO on lipid self-assembly under osmotic stress conditions. The Journal of Physical Chemistry. B, 122, 6471–6482. https://doi.org/10.1021/acs.jpcb.8b02159.

    Article  CAS  PubMed  Google Scholar 

  31. Liao, Y. T., Manson, A. C., DeLyser, M. R., et al. (2017). Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine. Proceedings of the National Academy of Sciences of the United States of America, 114, 2479–2484. https://doi.org/10.1073/pnas.1614609114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mancia, G. (2019). Initial combination treatment in the 2018 ESC/ESH hypertension guidelines. Anatolian Journal of Cardiology, 22, 100–101. https://doi.org/10.14744/AnatolJCardiol.2019.03292.

    Article  PubMed  Google Scholar 

  33. Yang, T., Santisteban, M. M., Rodriguez, V., et al. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65, 1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, C. N., Chang-Chien, G. P., Lin, S., et al. (2019). Targeting on gut microbial metabolite trimethylamine-N-oxide and short-chain fatty acid to prevent maternal high-fructose-diet-induced developmental programming of hypertension in adult male offspring. Molecular Nutrition & Food Research, 63, e1900073. https://doi.org/10.1002/mnfr.201900073.

    Article  CAS  Google Scholar 

  35. Yang, T., Richards, E. M., Pepine, C. J., et al. (2018). The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nature Reviews. Nephrology, 14, 442–456. https://doi.org/10.1038/s41581-018-0018-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu, C. N., Chang-Chien, G. P., Lin, S., et al. (2020). Association of trimethylamine, trimethylamine N-oxide, and dimethylamine with cardiovascular risk in children with chronic kidney disease. Journal of Clinical Medicine, 9, 336. https://doi.org/10.3390/jcm9020336.

    Article  CAS  PubMed Central  Google Scholar 

  37. Kim, S., Goel, R., Kumar, A., et al. (2018). Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clinical Science, 132, 701–718. https://doi.org/10.1042/CS20180087.

    Article  CAS  PubMed  Google Scholar 

  38. Yan, Q., Gu, Y., Li, X., et al. (2017). Alterations of the gut microbiome in hypertension. Frontiers in Cellular and Infection Microbiology, 7, 381. https://doi.org/10.3389/fcimb.2017.00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu, C. N., Lu, P. C., Hou, C. Y., et al. (2019). Blood pressure abnormalities associated with gut microbiota-derived short chain fatty acids in children with congenital anomalies of the kidney and urinary tract. Journal of Clinical Medicine, 8, 1090. https://doi.org/10.3390/jcm8081090.

    Article  CAS  PubMed Central  Google Scholar 

  40. Li, J., Zhao, F., Wang, Y., et al. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5, 14. https://doi.org/10.1186/s40168-016-0222-x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grant, M. M., & Jönsson, D. (2019). Next generation sequencing discoveries of the nitrate-responsive oral microbiome and its effect on vascular responses. Journal of Clinical Medicine, 8, 1110. https://doi.org/10.3390/jcm8081110.

    Article  CAS  PubMed Central  Google Scholar 

  42. Nie, J., Xie, L., Zhao, B., et al. (2018). Serum trimethylamine N-oxide concentration is positively associated with first stroke in hypertensive patients. Stroke, 49, 20212028. https://doi.org/10.1161/STROKEAHA.118.021997.

    Article  CAS  Google Scholar 

  43. Ge, X., Zheng, L., Zhuang, R., et al. (2020). The gut microbial metabolite trimethylamine N-oxide and hypertension risk: A systematic review and dose-response meta-analysis. Advances in Nutrition, 11, 66–76. https://doi.org/10.1093/advances/nmz064.

    Article  PubMed  Google Scholar 

  44. Wang, Z., Roberts, A. B., Buffa, J. A., et al. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 163, 1585–1595. https://doi.org/10.1016/j.cell.2015.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowin, J., Xia, Y., Jung, B., et al. (2017). Gut inflammation and dysbiosis in human motor neuron disease. Physiological Reports, 5, e13443. https://doi.org/10.14814/phy2.13443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adnan, S., Nelson, J. W., Ajami, N. J., et al. (2017). Alterations in the gut microbiota can elicit hypertension in rats. Physiological Genomics, 49, 96–104. https://doi.org/10.1152/physiolgenomics.00081.2016.

    Article  CAS  PubMed  Google Scholar 

  47. Ufnal, M., Jazwiec, R., Dadlez, M., et al. (2014). Trimethylamine-N-oxide: A carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. The Canadian Journal of Cardiology, 30, 1700–1705. https://doi.org/10.1016/j.cjca.2014.09.010.

    Article  PubMed  Google Scholar 

  48. Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2018). Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. The Canadian Journal of Cardiology, 34, 575–584. https://doi.org/10.1016/j.cjca.2017.12.005.

    Article  PubMed  Google Scholar 

  49. Rodriguez-Iturbe, B., Pons, H., & Johnson, R. J. (2017). Role of the immune system in hypertension. Physiological Reviews, 97, 1127–1164. https://doi.org/10.1152/physrev.00031.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buford, T. W. (2016). Hypertension and aging. Ageing Research Reviews, 26, 96–111. https://doi.org/10.1016/j.arr.2016.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Morate, E., Gimeno-Mallench, L., Stromsnes, K., et al. (2020). Relationship between diet, microbiota, and healthy aging. Biomedicines, 8, 287. https://doi.org/10.3390/biomedicines8080287.

    Article  CAS  PubMed Central  Google Scholar 

  52. Sikalidis, A. K., & Maykish, A. (2020). The gut microbiome and type 2 diabetes mellitus: Discussing a complex relationship. Biomedicines, 8, 8. https://doi.org/10.3390/biomedicines8010008.

    Article  CAS  PubMed Central  Google Scholar 

  53. Tanaka, M., & Itoh, H. (2019). Hypertension as a metabolic disorder and the novel role of the gut. Current Hypertension Reports, 21, 63. https://doi.org/10.1007/s11906-019-0964-5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ding, L., Chang, M., Guo, Y., et al. (2018). Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids in Health and Disease, 17, 286. https://doi.org/10.1186/s12944-018-0939-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koeth, R. A., Wang, Z., Levison, B. S., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576–585. https://doi.org/10.1038/nm.3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Canyelles, M., Tondo, M., Cedó, L., et al. (2018). Trimethylamine N-oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. International Journal of Molecular Sciences, 19, 3228. https://doi.org/10.3390/ijms19103228.

    Article  CAS  PubMed Central  Google Scholar 

  57. Janeiro, M. H., Ramírez, M. J., Milagro, F. I., et al. (2018). Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients, 10, 1398. https://doi.org/10.3390/nu10101398.

    Article  CAS  PubMed Central  Google Scholar 

  58. Ma, J., & Li, H. (2018). The role of gut microbiota in atherosclerosis and hypertension. Frontiers in Pharmacology, 9, 1082. https://doi.org/10.3389/fphar.2018.01082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia, E., Osté, M., Bennett, D. W., et al. (2019). High betaine, a trimethylamine N-oxide related metabolite, is prospectively associated with low future risk of type 2 diabetes mellitus in the PREVEND study. Journal of Clinical Medicine, 8, 1813. https://doi.org/10.3390/jcm8111813.

    Article  CAS  PubMed Central  Google Scholar 

  60. Dambrova, M., Latkovskis, G., Kuka, J., et al. (2016). Diabetes is associated with higher trimethylamine N-oxide plasma levels. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 124, 251–256. https://doi.org/10.1055/s-0035-1569330.

    Article  CAS  Google Scholar 

  61. Schugar, R. C., Shih, D. M., Warrier, M., et al. (2017). The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Reports, 19, 2451–2461. https://doi.org/10.1016/j.celrep.2017.05.077.

    Article  CAS  PubMed  Google Scholar 

  62. Barrea, L., Annunziata, G., Muscogiuri, G., et al. (2018). Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients, 10, 1971. https://doi.org/10.3390/nu10121971.

    Article  CAS  PubMed Central  Google Scholar 

  63. Annunziata, G., Maisto, M., Schisano, C., et al. (2019). Effect of grape pomace polyphenols with or without pectin on TMAO serum levels assessed by LC/MS-based assay: a preliminary clinical study on overweight/obese subjects. Frontiers in Pharmacology, 10, 575. https://doi.org/10.3389/fphar.2019.00575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miao, J., Ling, A. V., Manthena, P. V., et al. (2015). Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications, 6, 6498. https://doi.org/10.1038/ncomms7498.

    Article  CAS  PubMed  Google Scholar 

  65. Mondal, J. A. (2016). Effect of trimethylamine N-oxide on interfacial electrostatics at phospholipid monolayer-water interfaces and its relevance to cardiovascular disease. The Journal of Physical Chemistry Letters, 7, 1704–1708. https://doi.org/10.1021/acs.jpclett.6b00613.

    Article  CAS  PubMed  Google Scholar 

  66. Seldin, M. M., Meng, Y., Qi, H., et al. (2016). Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. Journal of the American Heart Association, 5, e002767. https://doi.org/10.1161/JAHA.115.002767.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chan, M. M., Yang, X., Wang, H., et al. (2019). The microbial metabolite trimethylamine N-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients, 11, 1821. https://doi.org/10.3390/nu11081821.

    Article  CAS  PubMed Central  Google Scholar 

  68. Liu, Y., & Dai, M. (2020). Trimethylamine N-oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators of Inflammation, 2020, 4634172. https://doi.org/10.1155/2020/4634172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boini, K. M., Hussain, T., Li, P. L., et al. (2017). Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44, 152–162. https://doi.org/10.1159/000484623.

    Article  Google Scholar 

  70. Chen, K., Zheng, X., Feng, M., et al. (2017). Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Frontiers in Physiology, 8, 139. https://doi.org/10.3389/fphys.2017.00139.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen, M. L., Zhu, X. H., Ran, L., et al. (2017). Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of the American Heart Association, 6, e006347. https://doi.org/10.1161/JAHA.117.006347.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jo, E. K., Kim, J. K., Shin, D. M., et al. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13, 148–159. https://doi.org/10.1038/cmi.2015.95.

    Article  CAS  Google Scholar 

  73. Sun, X., Jiao, X., Ma, Y., et al. (2016). Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 481, 63–70. https://doi.org/10.1016/j.bbrc.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  74. Ma, G., Pan, B., Chen, Y., et al. (2017). Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Bioscience Reports, 37, BSR20160244. https://doi.org/10.1042/BSR20160244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, W., Gregory, J. C., Org, E., et al. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165, 111–124. https://doi.org/10.1016/j.cell.2016.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nam, H. S. (2019). Gut microbiota and ischemic stroke: The role of trimethylamine N-oxide. Journal of Stroke, 21, 151–159. https://doi.org/10.5853/jos.2019.00472.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang, S., Li, X., Yang, F., et al. (2019). Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Frontiers in Pharmacology, 10, 1360. https://doi.org/10.3389/fphar.2019.01360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marcovecchio, P. M., Thomas, G. D., Mikulski, Z., et al. (2017). Scavenger receptor CD36 directs nonclassical monocyte patrolling along the endothelium during early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 2043–2052. https://doi.org/10.1161/ATVBAHA.117.309123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63. https://doi.org/10.1038/nature09922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geng, J., Yang, C., Wang, B., et al. (2018). Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomedicine & Pharmacotherapy, 97, 941–947. https://doi.org/10.1016/j.biopha.2017.11.016.

    Article  CAS  Google Scholar 

  81. Velasquez, M. T., Ramezani, A., Manal, A., et al. (2016). Trimethylamine N-oxide: The good, the bad and the unknown. Toxins, 8, 326. https://doi.org/10.3390/toxins8110326.

    Article  CAS  PubMed Central  Google Scholar 

  82. Barna, I., Nyúl, D., Szentes, T., et al. (2018). Review of the relation between gut microbiome, metabolic disease and hypertension. Orvosi Hetilap, 159, 346–351. https://doi.org/10.1556/650.2018.30787.

    Article  PubMed  Google Scholar 

  83. Sublette, M. G., Cross, T. L., Korcarz, C. E., et al. (2020). Effects of smoking and smoking cessation on the intestinal microbiota. Journal of Clinical Medicine, 9, 2963. https://doi.org/10.3390/jcm9092963.

    Article  CAS  PubMed Central  Google Scholar 

  84. Katsi, V., Didagelos, M., Skevofilax, S., et al. (2019). GUT microbiome-GUT dysbiosis-arterial hypertension: New horizons. Current Hypertension Reviews, 15, 40–46. https://doi.org/10.2174/1573402114666180613080439.

    Article  CAS  PubMed  Google Scholar 

  85. Santisteban, M. M., Qi, Y., Zubcevic, J., et al. (2017). Hypertension-linked pathophysiological alterations in the gut. Circulation Research, 120, 312–323. https://doi.org/10.1161/CIRCRESAHA.116.309006.

    Article  CAS  PubMed  Google Scholar 

  86. Upadrasta, A., & Madempudi, R. S. (2016). Probiotics and blood pressure: Current insights. Integrated Blood Pressure Control, 9, 33–42. https://doi.org/10.2147/IBPC.S73246.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ettinger, G., MacDonald, K., Reid, G., et al. (2014). The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes, 5, 719–728. https://doi.org/10.4161/19490976.2014.983775.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Baugh, M. E., Steele, C. N., Angiletta, C. J., et al. (2018). Inulin supplementation does not reduce plasma trimethylamine N-oxide concentrations in individuals at risk for type 2 diabetes. Nutrients, 10, 793. https://doi.org/10.3390/nu10060793.

    Article  CAS  PubMed Central  Google Scholar 

  89. Pei, R., Martin, D. A., DiMarco, D. M., et al. (2017). Evidence for the effects of yogurt on gut health and obesity. Critical Reviews in Food Science and Nutrition, 57, 1569–1583. https://doi.org/10.1080/10408398.2014.883356.

    Article  PubMed  Google Scholar 

  90. Khalesi, S., Sun, J., Buys, N., et al. (2014). Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension, 64, 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469.

    Article  CAS  PubMed  Google Scholar 

  91. Ramezani, A., Nolin, T. D., Barrows, I. R., et al. (2018). Gut colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in apolipoprotein e-/- mice. Scientific Reports, 8, 14752. https://doi.org/10.1038/s41598-018-33018-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brunt, V. E., Gioscia-Ryan, R. A., Richey, J. J., et al. (2019). Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. The Journal of Physiology, 597, 2361–2378. https://doi.org/10.1113/JP277336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Galla, S., Chakraborty, S., Cheng, X., et al. (2018). Disparate effects of antibiotics on hypertension. Physiological Genomics, 50, 837–884. https://doi.org/10.1152/physiolgenomics.00073.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, F., Cui, B., He, X., et al. (2018). Microbiota transplantation: Concept, methodology and strategy for its modernization. Protein & Cell, 9, 462–473. https://doi.org/10.1007/s13238-018-0541-8.

    Article  Google Scholar 

  95. Hu, X. F., Zhang, W. Y., Wen, Q., et al. (2019). Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacological Research, 139, 412–421. https://doi.org/10.1016/j.phrs.2018.11.042.

    Article  PubMed  Google Scholar 

  96. Chen, M. L., Yi, L., Zhang, Y., et al. (2016). Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio, 7, e02210–ee2215. https://doi.org/10.1128/mBio.02210-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Konop, M., Radkowski, M., Grochowska, M., et al. (2018). Enalapril decreases rat plasma concentration of TMAO, a gut bacteria-derived cardiovascular marker. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 23, 380–385. https://doi.org/10.1080/1354750X.2018.1432689.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Tianjin Health and Family Planning Industry High-Level Personnel Selection and Training Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Chao Lv.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WQ., Wang, YJ., Zhang, A. et al. TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. J. of Cardiovasc. Trans. Res. 14, 1117–1124 (2021). https://doi.org/10.1007/s12265-021-10115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10115-x

Keywords

Navigation