Skip to main content

Advertisement

Log in

Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roger, V. L. (2013). Epidemiology of heart failure. Circulation Research, 113, 646–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilmot, K. A., O'Flaherty, M., Capewell, S., Ford, E. S., & Vaccarino, V. (2015). Coronary heart disease mortality declines in the United States from 1979 through 2011: Evidence for stagnation in young adults, Especially Women. Circulation, 132, 997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science., 324, 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. The Journal of Clinical Investigation, 127, 1600–1612.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119, 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2009). Myocardial remodeling after infarction: The role of myofibroblasts. Nature Reviews. Cardiology, 7, 30–37.

    Article  PubMed  Google Scholar 

  7. Hanna, A., Humeres, C., & Frangogiannis, N. G. (2021). The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 77, 109826.

    Article  CAS  PubMed  Google Scholar 

  8. Dhavalikar, P., Robinson, A., Lan, Z., Jenkins, D., Chwatko, M., Salhadar, K., Jose,A., Kar, R., Shoga, E., Kannapiran, A., Cosgriff-hernadez, E. (2020). Review of integrin-targeting biomaterials in tissue engineering. Advanced Healthcare Materials, e2000795.

  9. Lietha, D., & Izard, T. (2020). Roles of membrane domains in integrin-mediated cell adhesion. International Journal of Molecular Sciences, 21.

  10. Zhao, J., Santino, F., Giacomini, D., & Gentilucci, L. (2020). Integrin-targeting peptides for the design of functional cell-responsive biomaterials. Biomedicines., 8.

  11. Paddillaya, N., Mishra, A., Kondaiah, P., Pullarkat, P., Menon, G. I., & Gundiah, N. (2019). Biophysics of cell-substrate interactions under shear. Frontiers in Cell and Development Biology, 7, 251.

    Article  Google Scholar 

  12. Bachmann, M., Kukkurainen, S., Hytonen, V. P., & Wehrle-Haller, B. (2019). Cell adhesion by integrins. Physiological Reviews, 99, 1655–1699.

    Article  CAS  PubMed  Google Scholar 

  13. Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews. Molecular Cell Biology, 20, 457–473.

    Article  CAS  PubMed  Google Scholar 

  14. Santoro, R., Perrucci, G. L., Gowran, A., & Pompilio, G. (2019). Unchain my heart: Integrins at the basis of iPSC cardiomyocyte differentiation. Stem Cells International, 2019, 8203950.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun, Z., Costell, M., & Fassler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nature Cell Biology, 21, 25–31.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C., Manso, A. M., & Ross, R. S. (2019). Talin and kindlin as integrin-activating proteins: Focus on the heart. Pediatric Cardiology, 40, 1401–1409.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Israeli-Rosenberg, S., Manso, A. M., Okada, H., & Ross, R. S. (2014). Integrins and integrin-associated proteins in the cardiac myocyte. Circulation Research, 114, 572–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bildyug, N. (2019). Extracellular matrix in regulation of contractile system in cardiomyocytes. International Journal of Molecular Sciences, 20.

  19. Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature., 552, 219–224.

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Su, Y., Xia, W., Qin, Y., Humphries, M. J., Vestweber, D., et al. (2017). Conformational equilibria and intrinsic affinities define integrin activation. The EMBO Journal, 36, 629–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pierschbacher, M. D., & Ruoslahti, E. (1987). Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. The Journal of Biological Chemistry, 262, 17294–17298.

    Article  CAS  PubMed  Google Scholar 

  22. Rother, J., Richter, C., Turco, L., Knoch, F., Mey, I., Luther, S., et al. (2015). Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open Biology, 5, 150038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Putten, S., Shafieyan, Y., & Hinz, B. (2015). Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 93, 133–142.

    Article  PubMed  Google Scholar 

  24. Schroer, A. K., & Merryman, W. D. (2015). Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 128, 1865–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, C., Li, R., Ross, R. S., & Manso, A. M. (2015). Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 93, 162–174.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saucerman, J. J., Tan, P. M., Buchholz, K. S., McCulloch, A. D., & Omens, J. H. (2019). Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nature Reviews. Cardiology, 16, 361–378.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Talman, V., & Kivela, R. (2018). Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Frontiers in Cardiovascular Medicine, 5, 101.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murray, I. R., Gonzalez, Z. N., Baily, J., Dobie, R., Wallace, R. J., Mackinnon, A. C., et al. (2017). alphav integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nature Communications, 8, 1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konstandin, M. H., Toko, H., Gastelum, G. M., Quijada, P., De La Torre, A., Quintana, M., et al. (2013). Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circulation Research, 113, 115–125.

    Article  CAS  PubMed  Google Scholar 

  30. Civitarese, R. A., Kapus, A., McCulloch, C. A., & Connelly, K. A. (2016). Role of integrins in mediating cardiac fibroblast-cardiomyocyte cross talk: A dynamic relationship in cardiac biology and pathophysiology. Basic Research in Cardiology, 112, 6.

    Article  PubMed  Google Scholar 

  31. Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., & Tarone, G. (2006). Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovascular Research, 70, 422–433.

    Article  CAS  PubMed  Google Scholar 

  32. Gallo, S., Vitacolonna, A., Bonzano, A., Comoglio, P., & Crepaldi, T. (2019). ERK: A key player in the pathophysiology of cardiac hypertrophy. International Journal of Molecular Sciences, 20.

  33. Frangogiannis, N. G. (2018). Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.

    Article  PubMed  Google Scholar 

  34. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, 1–19.

    Article  CAS  Google Scholar 

  35. Wolfenson, H., Lavelin, I., & Geiger, B. (2013). Dynamic regulation of the structure and functions of integrin adhesions. Developmental Cell, 24, 447–458.

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., et al. (2015). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326–334.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bansal, R., Nakagawa, S., Yazdani, S., van Baarlen, J., Venkatesh, A., Koh, A. P., et al. (2017). Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Experimental & Molecular Medicine, 49, e396.

    Article  CAS  Google Scholar 

  38. O'Reilly, S., Ciechomska, M., Cant, R., & van Laar, J. M. (2014). Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. The Journal of Biological Chemistry, 289, 9952–9960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, Z., Tseng, H. Y., Tan, S., Senger, F., Kurzawa, L., Dedden, D., et al. (2016). Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nature Cell Biology, 18, 941–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell., 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  41. Lecarpentier, Y., Kindler, V., Krokidis, X., Bochaton-Piallat, M. L., Claes, V., Hebert, J. L., et al. (2020). Statistical mechanics of non-muscle myosin IIA in human bone marrow-derived mesenchymal stromal cells seeded in a collagen scaffold: A thermodynamic near-equilibrium linear system modified by the tripeptide Arg-Gly-Asp (RGD). Cells., 9.

  42. Chaudhuri, O., Gu, L., Darnell, M., Klumpers, D., Bencherif, S. A., Weaver, J. C., et al. (2015). Substrate stress relaxation regulates cell spreading. Nature Communications, 6, 6364.

    Article  PubMed  Google Scholar 

  43. Seo, B. R., Chen, X., Ling, L., Song, Y. H., Shimpi, A. A., Choi, S., et al. (2020). Collagen microarchitecture mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 117, 11387–11398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carson, D., Hnilova, M., Yang, X., Nemeth, C. L., Tsui, J. H., Smith, A. S., et al. (2016). Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Applied Materials & Interfaces, 8, 21923–21932.

    Article  CAS  Google Scholar 

  45. Chiron, S., Tomczak, C., Duperray, A., Laine, J., Bonne, G., Eder, A., et al. (2012). Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLoS One, 7, e36173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Klos, M., Wilson, G. F., Herman, A. M., Lian, X., Raval, K. K., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: The matrix sandwich method. Circulation Research, 111, 1125–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hinz, B., McCulloch, C. A., & Coelho, N. M. (2019). Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Experimental Cell Research, 379, 119–128.

    Article  CAS  PubMed  Google Scholar 

  48. Hu, S., Dasbiswas, K., Guo, Z., Tee, Y. H., Thiagarajan, V., Hersen, P., et al. (2017). Long-range self-organization of cytoskeletal myosin II filament stacks. Nature Cell Biology, 19, 133–141.

    Article  CAS  PubMed  Google Scholar 

  49. Sun, Z., Guo, S. S., & Fassler, R. (2016). Integrin-mediated mechanotransduction. The Journal of Cell Biology, 215, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Happe, C. L., & Engler, A. J. (2016). Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circulation Research, 118, 296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, L., Zhou, Q., Tian, H., Su, Y., Fu, G. H., & Sun, T. (2020). Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. International Journal of Biological Sciences, 16, 644–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Titus, M. A. (2017). Growing, splitting and stacking myosin II filaments. Nature Cell Biology, 19, 77–79.

    Article  CAS  PubMed  Google Scholar 

  53. Klapholz, B., & Brown, N. H. (2017). Talin - The master of integrin adhesions. Journal of Cell Science, 130, 2435–2446.

    CAS  PubMed  Google Scholar 

  54. Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. The Journal of Cell Biology, 166, 877–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henning Stumpf, B., Ambriovic-Ristov, A., Radenovic, A., & Smith, A. S. (2020). Recent advances and prospects in the research of nascent adhesions. Frontiers in Physiology, 11, 574371.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bays, J. L., & DeMali, K. A. (2017). Vinculin in cell-cell and cell-matrix adhesions. Cellular and Molecular Life Sciences, 74, 2999–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pagliarosi, O., Picchio, V., Chimenti, I., Messina, E., & Gaetani, R. (2020). Building an artificial cardiac microenvironment: A focus on the extracellular matrix. Frontiers in Cell and Development Biology, 8, 559032.

    Article  Google Scholar 

  58. Chopra, A., Tabdanov, E., Patel, H., Janmey, P. A., & Kresh, J. Y. (2011). Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1252–H1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leckband, D. E., & de Rooij, J. (2014). Cadherin adhesion and mechanotransduction. Annual Review of Cell and Developmental Biology, 30, 291–315.

    Article  CAS  PubMed  Google Scholar 

  60. Lecarpentier, Y., Kindler, V., Bochaton-Piallat, M. L., Sakic, A., Claes, V., Hebert, J. L., et al. (2019). Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the non-muscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold. PLoS One, 14, e0222683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996). Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. Journal of Cell Science, 109(Pt 13), 2989–2999.

    Article  PubMed  Google Scholar 

  62. Cheng, P., Andersen, P., Hassel, D., Kaynak, B. L., Limphong, P., Juergensen, L., et al. (2013). Fibronectin mediates mesendodermal cell fate decisions. Development., 140, 2587–2596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, J. T., Rayburn, H., & Hynes, R. O. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development., 119, 1093–1105.

    Article  CAS  PubMed  Google Scholar 

  64. Chimenti, I., Rizzitelli, G., Gaetani, R., Angelini, F., Ionta, V., Forte, E., et al. (2011). Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials., 32, 9271–9281.

    Article  CAS  PubMed  Google Scholar 

  65. Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J., & Franz, C. M. (2007). Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Molecular Biology of the Cell, 18, 1634–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Changede, R., Xu, X., Margadant, F., & Sheetz, M. P. (2015). Nascent integrin adhesions form on all matrix rigidities after integrin activation. Developmental Cell, 35, 614–621.

    Article  CAS  PubMed  Google Scholar 

  67. Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J., & Srivastava, D. (2009). A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nature Cell Biology, 11, 951–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gaetani, R., Yin, C., Srikumar, N., Braden, R., Doevendans, P. A., Sluijter, J. P., et al. (2015). Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplantation, 25, 1653–1663.

    Article  PubMed  Google Scholar 

  69. Burridge, K., & Guilluy, C. (2015). Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research, 343, 14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Atherton, P., Stutchbury, B., Jethwa, D., & Ballestrem, C. (2016). Mechanosensitive components of integrin adhesions: Role of vinculin. Experimental Cell Research, 343, 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grover, C. N., Gwynne, J. H., Pugh, N., Hamaia, S., Farndale, R. W., Best, S. M., et al. (2012). Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 8, 3080–3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kapp, T. G., Rechenmacher, F., Neubauer, S., Maltsev, O. V., Cavalcanti-Adam, E. A., Zarka, R., et al. (2017). A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Scientific Reports, 7, 39805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roca-Cusachs, P., Gauthier, N. C., Del Rio, A., & Sheetz, M. P. (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 106, 16245–16250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Serrao, G. W., Turnbull, I. C., Ancukiewicz, D., Kim, D. E., Kao, E., Cashman, T. J., et al. (2012). Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Engineering. Part A, 18, 1322–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qi, L., Yu, Y., Chi, X., Xu, W., Lu, D., Song, Y., et al. (2015). Kindlin-2 interacts with alpha-actinin-2 and beta1 integrin to maintain the integrity of the Z-disc in cardiac muscles. FEBS Letters, 589, 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  76. Okada, H., Lai, N. C., Kawaraguchi, Y., Liao, P., Copps, J., Sugano, Y., et al. (2013). Integrins protect cardiomyocytes from ischemia/reperfusion injury. The Journal of Clinical Investigation, 123, 4294–4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heras-Bautista, C. O., Mikhael, N., Lam, J., Shinde, V., Katsen-Globa, A., Dieluweit, S., et al. (2019). Cardiomyocytes facing fibrotic conditions re-express extracellular matrix transcripts. Acta Biomaterialia, 89, 180–192.

    Article  CAS  PubMed  Google Scholar 

  78. Darnell, M., O'Neil, A., Mao, A., Gu, L., Rubin, L. L., & Mooney, D. J. (2018). Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E8368–E8E77.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature., 584, 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sauer, F., Oswald, L., Ariza de Schellenberger, A., Tzschatzsch, H., Schrank, F., Fischer, T., et al. (2019). Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter, 15, 3055–3064.

    Article  CAS  PubMed  Google Scholar 

  81. Schips, T. G., Vanhoutte, D., Vo, A., Correll, R. N., Brody, M. J., Khalil, H., et al. (2019). Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nature Communications, 10, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cameron, A. R., Frith, J. E., & Cooper-White, J. J. (2011). The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials., 32, 5979–5993.

    Article  CAS  PubMed  Google Scholar 

  83. Borg, T. K., Goldsmith, E. C., Price, R., Carver, W., Terracio, L., & Samarel, A. M. (2000). Specialization at the Z line of cardiac myocytes. Cardiovascular Research, 46, 277–285.

    Article  CAS  PubMed  Google Scholar 

  84. Burgess, M. L., Terracio, L., Hirozane, T., & Borg, T. K. (2002). Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovascular Pathology, 11, 78–87.

    Article  CAS  PubMed  Google Scholar 

  85. Yang, H., Cai, C., Ye, L., Rao, Y., Wang, Q., Hu, D., et al. (2015). The relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive cancer risk: Insights from a meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16, 1306–1313.

    Article  CAS  PubMed  Google Scholar 

  86. Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., et al. (1999). Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circulation Research, 85, 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  87. Mayer, D. C., & Leinwand, L. A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. The Journal of Cell Biology, 139, 1477–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ng, C. P., Hinz, B., & Swartz, M. A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118, 4731–4739.

    Article  CAS  PubMed  Google Scholar 

  89. Lecarpentier, Y., Schussler, O., Sakic, A., Rincon-Garriz, J. M., Soulie, P., Bochaton-Piallat, M. L., et al. (2018). Human bone marrow contains mesenchymal stromal stem cells that differentiate in vitro into contractile myofibroblasts controlling T lymphocyte proliferation. Stem Cells International, 2018, 6134787.

    Article  PubMed  PubMed Central  Google Scholar 

  90. van der Flier, A., Badu-Nkansah, K., Whittaker, C. A., Crowley, D., Bronson, R. T., Lacy-Hulbert, A., et al. (2010). Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development., 137, 2439–2449.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sharp, W. W., Simpson, D. G., Borg, T. K., Samarel, A. M., & Terracio, L. (1997). Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. The American Journal of Physiology, 273, H546–H556.

    CAS  PubMed  Google Scholar 

  92. Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., et al. (2006). Coupling of the nucleus and cytoplasm: Role of the LINC complex. The Journal of Cell Biology, 172, 41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, J., Zhu, W., Radisic, M., & Vunjak-Novakovic, G. (2018). Can we engineer a human cardiac patch for therapy? Circulation Research, 123, 244–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, J. Q., Elzey, B., Williams, G., Lu, S., Law, D. J., & Horowits, R. (2001). Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart. Biochemistry., 40, 14898–14906.

    Article  CAS  PubMed  Google Scholar 

  95. Brancaccio, M., Guazzone, S., Menini, N., Sibona, E., Hirsch, E., De Andrea, M., et al. (1999). Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. The Journal of Biological Chemistry, 274, 29282–29288.

    Article  CAS  PubMed  Google Scholar 

  96. Willey, C. D., Balasubramanian, S., Rodriguez Rosas, M. C., Ross, R. S., & Kuppuswamy, D. (2003). Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. Journal of Molecular and Cellular Cardiology, 35, 671–683.

    Article  CAS  PubMed  Google Scholar 

  97. Manso, A. M., Okada, H., Sakamoto, F. M., Moreno, E., Monkley, S. J., Li, R., et al. (2017). Loss of mouse cardiomyocyte talin-1 and talin-2 leads to beta-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 114, E6250–E62E9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Valencik, M. L., Zhang, D., Punske, B., Hu, P., McDonald, J. A., & Litwin, S. E. (2006). Integrin activation in the heart: A link between electrical and contractile dysfunction? Circulation Research, 99, 1403–1410.

    Article  CAS  PubMed  Google Scholar 

  99. Quang, K. L., Maguy, A., Qi, X. Y., Naud, P., Xiong, F., Tadevosyan, A., et al. (2015). Loss of cardiomyocyte integrin-linked kinase produces an arrhythmogenic cardiomyopathy in mice. Circulation. Arrhythmia and Electrophysiology, 8, 921–932.

    Article  CAS  PubMed  Google Scholar 

  100. Suryakumar, G., Kasiganesan, H., Balasubramanian, S., & Kuppuswamy, D. (2010). Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. Journal of Cardiovascular Pharmacology, 55, 567–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Su, Y., Tian, H., Wei, L., Fu, G., & Sun, T. (2018). Integrin beta3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochimica et Biophysica Sinica Shanghai, 50, 658–665.

    Article  CAS  Google Scholar 

  102. Maninova, M., & Vomastek, T. (2016). Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. The FEBS Journal, 283, 3676–3693.

    Article  CAS  PubMed  Google Scholar 

  103. Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G., & Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Molecular Biology of the Cell, 12, 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burnette, D. T., Shao, L., Ott, C., Pasapera, A. M., Fischer, R. S., Baird, M. A., et al. (2014). A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. The Journal of Cell Biology, 205, 83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beach, J. R., Bruun, K. S., Shao, L., Li, D., Swider, Z., Remmert, K., et al. (2017). Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments. Nature Cell Biology, 19, 85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H., & Furst, D. O. (2000). A functional knock-out of titin results in defective myofibril assembly. Journal of Cell Science, 113(Pt 8), 1405–1414.

    PubMed  Google Scholar 

  107. Manso, A. M., Kang, S. M., & Ross, R. S. (2009). Integrins, focal adhesions, and cardiac fibroblasts. Journal of Investigative Medicine, 57, 856–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Galdyszynska, M., Bobrowska, J., Lekka, M., Radwanska, P., Piera, L., Szymanski, J., et al. (2020). The stiffness-controlled release of interleukin-6 by cardiac fibroblasts is dependent on integrin alpha2beta1. Journal of Cellular and Molecular Medicine.

  109. Carracedo, S., Lu, N., Popova, S. N., Jonsson, R., Eckes, B., & Gullberg, D. (2010). The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. The Journal of Biological Chemistry, 285, 10434–10445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perrucci, G. L., Barbagallo, V. A., Corliano, M., Tosi, D., Santoro, R., Nigro, P., et al. (2018). Integrin alphanubeta5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. Journal of Translational Medicine, 16, 352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarrazy, V., Koehler, A., Chow, M. L., Zimina, E., Li, C. X., Kato, H., et al. (2014). Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovascular Research, 102, 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bouvet, M., Claude, O., Roux, M., Skelly, D., Masurkar, N., Mougenot, N., et al. (2020). Anti-integrin alphav therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1(+) stromal cells. Scientific Reports, 10, 11404.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Margadant, C., & Sonnenberg, A. (2010). Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Reports, 11, 97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127, 526–537.

    Article  CAS  PubMed  Google Scholar 

  115. Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J. J., & Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. The Journal of Cell Biology, 172, 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, Y., Li, H., Wei, R., Ma, J., Zhao, Y., Lian, Z., et al. (2015). Endothelial cells regulate cardiac myocyte reorganisation through beta1-integrin signalling. Cellular Physiology and Biochemistry, 35, 1808–1820.

    Article  CAS  PubMed  Google Scholar 

  117. Kim, S., Bell, K., Mousa, S. A., & Varner, J. A. (2000). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American Journal of Pathology, 156, 1345–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xie, L., Duncan, M. B., Pahler, J., Sugimoto, H., Martino, M., Lively, J., et al. (2011). Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 108, 9939–9944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Osada-Oka, M., Ikeda, T., Akiba, S., & Sato, T. (2008). Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1. Journal of Cellular Biochemistry, 104, 1918–1926.

    Article  CAS  PubMed  Google Scholar 

  120. Giordano, A., D'Angelillo, A., Romano, S., D'Arrigo, P., Corcione, N., Bisogni, R., et al. (2014). Tirofiban induces VEGF production and stimulates migration and proliferation of endothelial cells. Vascular Pharmacology, 61, 63–71.

    Article  CAS  PubMed  Google Scholar 

  121. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science., 326, 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zwolanek, D., Flicker, M., Kirstatter, E., Zaucke, F., van Osch, G. J., & Erben, R. G. (2015). beta1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. BioResearch Open Access., 4, 39–53.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Popov, C., Radic, T., Haasters, F., Prall, W. C., Aszodi, A., Gullberg, D., et al. (2011). Integrins alpha2beta1 and alpha11beta1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death & Disease, 2, e186.

    Article  CAS  Google Scholar 

  124. Veevers-Lowe, J., Ball, S. G., Shuttleworth, A., & Kielty, C. M. (2011). Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. Journal of Cell Science, 124, 1288–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nitzsche, F., Muller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460.

    Article  PubMed  Google Scholar 

  126. Jaukovic, A., Abadjieva, D., Trivanovic, D., Stoyanova, E., Kostadinova, M., Pashova, S., et al. (2020). Specificity of 3D MSC spheroids microenvironment: Impact on MSC behavior and properties. Stem Cell Reviews and Reports, 16, 853–875.

    Article  CAS  PubMed  Google Scholar 

  127. Rashedi, I., Talele, N., Wang, X. H., Hinz, B., Radisic, M., & Keating, A. (2017). Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One, 12, e0187348.

    Article  PubMed  PubMed Central  Google Scholar 

  128. van den Akker, F., Deddens, J. C., Doevendans, P. A., & Sluijter, J. P. (1830). Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica et Biophysica Acta, 2012, 2449–2458.

    Google Scholar 

  129. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  130. Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127.

    Article  CAS  PubMed  Google Scholar 

  131. Song, S. W., Chang, W., Song, B. W., Song, H., Lim, S., Kim, H. J., et al. (2009). Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells, 27, 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  132. Cho, Y. H., Cha, M. J., Song, B. W., Kim, I. K., Song, H., Chang, W., et al. (2011). Enhancement of MSC adhesion and therapeutic efficiency in ischemic heart using lentivirus delivery with periostin. Biomaterials., 33, 1376–1385.

    Article  PubMed  Google Scholar 

  133. Salinas, C. N., & Anseth, K. S. (2008). The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. Journal of Tissue Engineering and Regenerative Medicine, 2, 296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Simpson, D. L., & Dudley Jr., S. C. (2011). Modulation of human mesenchymal stem cell function in a three-dimensional matrix promotes attenuation of adverse remodelling after myocardial infarction. Journal of Tissue Engineering and Regenerative Medicine, 7, 192–202.

    Article  PubMed  Google Scholar 

  135. Maureira, P., Marie, P. Y., Yu, F., Poussier, S., Liu, Y., Groubatch, F., et al. (2012). Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. Journal of Biomedical Science, 19, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Di Spigna, G., Iannone, M., Ladogana, P., Salzano, S., Ventre, M., Covelli, B., et al. (2017). Human cardiac multipotent adult stem cells in 3D matrix: New approach of tissue engineering in cardiac regeneration post-infarction. Journal of Biological Regulators and Homeostatic Agents, 31, 911–921.

    PubMed  Google Scholar 

  137. Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28, 2088–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, X., Tamama, K., Xie, X., & Guan, J. (2016). Improving cell engraftment in cardiac stem cell therapy. Stem Cells International, 2016, 7168797.

    Article  PubMed  Google Scholar 

  139. Liu, S., Jiang, Z., Qiao, L., Guo, B., Xiao, W., Zhang, X., et al. (2017). Integrin beta-3 is required for the attachment, retention and therapeutic benefits of human cardiospheres in myocardial infarction. Journal of Cellular and Molecular Medicine, 22, 382–389.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Battista, S., Guarnieri, D., Borselli, C., Zeppetelli, S., Borzacchiello, A., Mayol, L., et al. (2005). The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials., 26, 6194–6207.

    Article  CAS  PubMed  Google Scholar 

  141. Thorsteinsdottir, S., Roelen, B. A., Goumans, M. J., Ward-van Oostwaard, D., Gaspar, A. C., & Mummery, C. L. (1999). Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation., 64, 173–184.

    Article  CAS  PubMed  Google Scholar 

  142. van Laake, L. W., van Donselaar, E. G., Monshouwer-Kloots, J., Schreurs, C., Passier, R., Humbel, B. M., et al. (2010). Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cellular and Molecular Life Sciences, 67, 277–290.

    Article  PubMed  Google Scholar 

  143. Sun, M., Opavsky, M. A., Stewart, D. J., Rabinovitch, M., Dawood, F., Wen, W. H., et al. (2003). Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: Regulation by cytokines. Circulation., 107, 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  144. Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2006). Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart., 92, 1309–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Adderley, S. R., & Fitzgerald, D. J. (2000). Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. The Journal of Biological Chemistry, 275, 5760–5766.

    Article  CAS  PubMed  Google Scholar 

  146. Giordano, A., Romano, S., D'Angelillo, A., Corcione, N., Messina, S., Avellino, R., et al. (2015). Tirofiban counteracts endothelial cell apoptosis through the VEGF/VEGFR2/pAkt axis. Vascular Pharmacology, 80, 67–74.

    Article  PubMed  Google Scholar 

  147. Hanna, A., & Frangogiannis, N. G. (2019). The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med., 6, 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Higuchi, T., Bengel, F. M., Seidl, S., Watzlowik, P., Kessler, H., Hegenloh, R., et al. (2008). Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovascular Research, 78, 395–403.

    Article  CAS  PubMed  Google Scholar 

  149. Sherif, H. M., Saraste, A., Nekolla, S. G., Weidl, E., Reder, S., Tapfer, A., et al. (2012). Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. Journal of Nuclear Medicine, 53, 318–323.

    Article  CAS  PubMed  Google Scholar 

  150. Jenkins, W. S., Vesey, A. T., Stirrat, C., Connell, M., Lucatelli, C., Neale, A., et al. (2016). Cardiac alphaVbeta3 integrin expression following acute myocardial infarction in humans. Heart., 103, 607–615.

    Article  PubMed  Google Scholar 

  151. Ben-Mordechai, T., Holbova, R., Landa-Rouben, N., Harel-Adar, T., Feinberg, M. S., Abd Elrahman, I., et al. (2013). Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology, 62, 1890–1901.

    Article  PubMed  Google Scholar 

  152. Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205, 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., et al. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circulation Research, 88, 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  155. Deckx, S., Johnson, D. M., Rienks, M., Carai, P., Van Deel, E., Van der Velden, J., et al. (2019). Extracellular SPARC increases cardiomyocyte contraction during health and disease. PLoS One, 14, e0209534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., et al. (2005). Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation., 111, 2935–2942.

    Article  CAS  PubMed  Google Scholar 

  157. Weis, S. M., & Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature., 437, 497–504.

    Article  CAS  PubMed  Google Scholar 

  158. Yanamandala, M., Zhu, W., Garry, D. J., Kamp, T. J., Hare, J. M., Jun, H. W., et al. (2017). Overcoming the roadblocks to cardiac cell therapy using tissue engineering. Journal of the American College of Cardiology, 70, 766–775.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Menasche, P., Vanneaux, V., Fabreguettes, J. R., Bel, A., Tosca, L., Garcia, S., et al. (2014). Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: A translational experience. European Heart Journal, 36, 743–750.

    Article  PubMed  Google Scholar 

  160. Nguyen, P. K., Rhee, J. W., & Wu, J. C. (2016). Adult stem cell therapy and heart failure, 2000 to 2016: A systematic review. JAMA Cardiology, 1, 831–841.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Liu, J., Narsinh, K. H., Lan, F., Wang, L., Nguyen, P. K., Hu, S., et al. (2012). Early stem cell engraftment predicts late cardiac functional recovery: Preclinical insights from molecular imaging. Circulation. Cardiovascular Imaging, 5, 481–490.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ahmadi, A., McNeill, B., Vulesevic, B., Kordos, M., Mesana, L., Thorn, S., et al. (2014). The role of integrin alpha2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials., 35, 4749–4758.

    Article  CAS  PubMed  Google Scholar 

  163. Zhu, J., Hoop, C. L., Case, D. A., & Baum, J. (2018). Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. Scientific Reports, 8, 16646.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Schussler, O., Coirault, C., Louis-Tisserand, M., Al-Chare, W., Oliviero, P., Menard, C., et al. (2009). Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nature Clinical Practice. Cardiovascular Medicine, 6, 240–249.

    CAS  PubMed  Google Scholar 

  165. Radisic, M., Deen, W., Langer, R., & Vunjak-Novakovic, G. (2005). Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1278–H1289.

    Article  CAS  PubMed  Google Scholar 

  166. Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., & Vunjak-Novakovic, G. (2006). Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 93, 332–343.

    Article  CAS  PubMed  Google Scholar 

  167. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Radisic, M., Marsano, A., Maidhof, R., Wang, Y., & Vunjak-Novakovic, G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3, 719–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Paez-Mayorga, J., Hernandez-Vargas, G., Ruiz-Esparza, G. U., Iqbal, H. M. N., Wang, X., Zhang, Y. S., et al. (2018). Bioreactors for cardiac tissue engineering. Advanced Healthcare Materials, 8, e1701504.

    Article  PubMed  Google Scholar 

  170. Yang, H., Borg, T. K., Liu, H., & Gao, B. Z. (2014). Interactive relationship between basement-membrane development and sarcomerogenesis in single cardiomyocytes. Experimental Cell Research, 330, 222–232.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ladage, D., Yaniz-Galende, E., Rapti, K., Ishikawa, K., Tilemann, L., Shapiro, S., et al. (2013). Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS One, 8, e59656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O.S. decided on content and wrote the original draft of the manuscript. Y.L. collaborated in writing and revising the manuscript. J.C and M.A. revised the manuscript and approved the final version. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Olivier Schussler.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schussler, O., Chachques, J.C., Alifano, M. et al. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J. of Cardiovasc. Trans. Res. 15, 179–203 (2022). https://doi.org/10.1007/s12265-021-10154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10154-4

Keywords

Navigation