Skip to main content
Log in

Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new kind of photodetector based on a double-walled carbon nanotube (DWCNT) film and a TiO2 nanotube array with hetrodimensional non-ohmic contacts has been fabricated. Due to the dimensionality difference effect, the DWCNT film/TiO2 nanotube array photodetector exhibits a much higher photocurrent-to-dark current ratio and photoresponse relative to an Au film/TiO2 nanotube array device, even at small bias voltage. The photocurrent-to-dark current ratio reached four orders of magnitude and a high photoresponse of 2467 A/W was found upon irradiation at 340 nm. Furthermore, the photosensitive regions could be extended into the visible range. The photocurrent-to-dark current ratio reached approximately three orders of magnitude upon irradiation at 532 nm, where the photon energy is much lower than the band gap of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

    Article  CAS  Google Scholar 

  2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  3. Kang, T. S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 2009, 9, 601–606.

    Article  CAS  Google Scholar 

  4. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.

    Article  CAS  Google Scholar 

  5. Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 2006, 17, 398–402.

    Article  CAS  Google Scholar 

  6. Sul, Y. T.; Johansson, C. B.; Petronis, S.; Krozer, A.; Jeong, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: The oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002, 23, 491–501.

    Article  CAS  Google Scholar 

  7. Kong, X. Z.; Liu, C. X.; Dong, W.; Zhang, X. D.; Tao, C.; Shen, L.; Zhou, J. R.; Fei, Y. F.; Ruan, S. P. Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Appl. Phys. Lett. 2009, 94, 123502.

    Article  Google Scholar 

  8. Xue, H. L.; Kong, X. Z.; Liu, Z. R.; Liu, C. X.; Zhou, J. R.; Chen, W. Y.; Ruan, S. P.; Xu, Q. TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 2007, 90, 201118.

    Article  Google Scholar 

  9. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74.

    Article  CAS  Google Scholar 

  10. Yu, B. Y.; Tsai, A.; Tsai, S. P.; Wong, K. T.; Yang, Y.; Chu, C. W.; Shyue, J. J. Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 2008, 19, 255202.

    Article  Google Scholar 

  11. Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 2009, 92, 289–301.

    Article  CAS  Google Scholar 

  12. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74.

    Article  CAS  Google Scholar 

  13. Zhang, L.; Tu, X.; Welsher, K.; Wang, X.; Zheng, M.; Dai, H. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2454–2455.

    Article  CAS  Google Scholar 

  14. Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    Article  CAS  Google Scholar 

  15. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.

    Article  CAS  Google Scholar 

  16. Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990–5995.

    Article  CAS  Google Scholar 

  17. Aguirre, C. M.; Auvray, S.; Pigeon, S.; Izquierdo, R.; Desjardins, P.; Martel, R. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 2006, 88, 183104.

    Article  Google Scholar 

  18. Chaudhary, S.; Lu, H. W.; Muller, A. M.; Bardeen, C. J.; Ozkan, M. Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymerfullerene solar cells. Nano Lett. 2007, 7, 1973–1979.

    Article  CAS  Google Scholar 

  19. Sun, J. L.; Wei, J. Q.; Zhu, J. L.; Xu, D.; Liu, X.; Sun, H.; Wu, D. H.; Wu, N. L. Photoinduced currents in carbon nanotube/metal heterojunctions. Appl. Phys. Lett. 2006, 88, 131107.

    Article  Google Scholar 

  20. Wei, J. Q.; Sun, J. L.; Zhu, J. L.; Wang, K. L.; Wang, Z. C.; Luo, J. B.; Wu, D. H.; Cao, A. Y. Carbon nanotube macrobundles for light sensing. Small 2006, 2, 988–993.

    Article  CAS  Google Scholar 

  21. Xu, J.; Sun, J. L.; Zhu, J. L. Thermo- and photoinduced voltages in Ag heterodimensional junctions. Appl. Phys. Lett. 2007, 91, 161107.

    Article  Google Scholar 

  22. Kuo, T. F.; Tzolov, M. B.; Straus, D. A.; Xu, J. Electron transport characteristics of the carbon nanotubes/Si heterodimensional heterostructure. Appl. Phys. Lett. 2008, 92, 212107.

    Article  Google Scholar 

  23. Kuo, T. F.; Tzolov, M. B.; Straus, D. A.; Xu, J. Electron transport in carbon nanotube-silicon heterodimensional heterojunction array: An experimental investigation. Appl. Phys. Lett. 2009, 94, 232105.

    Article  Google Scholar 

  24. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Highly-ordered TiO2 nanotube arrays up to 220μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, 065707.

    Article  Google Scholar 

  25. Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y.; Wu, D. H. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Lin Zhu, Wei Liu or Jia-Lin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Zhu, JL., Liu, W. et al. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Res. 4, 901–907 (2011). https://doi.org/10.1007/s12274-011-0146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0146-5

Keywords

Navigation