Skip to main content
Log in

Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Ge x alloy heterojunction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1–x Ge x alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1–x Ge x alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1,144, 1,162 and 1,185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1–x Ge x alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vispute, R. D.; Talyansky, V.; Choopun, S.; Sharma, R. P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J. B.; Spencer, M. G.; Li, Y. X. et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 1998, 73, 348–350.

    Article  Google Scholar 

  2. Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943–2945.

    Article  Google Scholar 

  3. Asil, H.; Gür, E.; Çinar, K.; Coskun, C. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics. Appl. Phys. Lett. 2009, 94, 2535–1.

    Google Scholar 

  4. Zhong, J.; Chen, H.; Saraf, G.; Lu, Y; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 2035–5.

    Google Scholar 

  5. An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 1211–8.

    Google Scholar 

  6. Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076–1082.

    Article  Google Scholar 

  7. Alivov, Ya. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719–4721.

    Article  Google Scholar 

  8. Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Stat. Sol. A 2004, 201, 2203–2212.

    Article  Google Scholar 

  9. Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323–328.

    Article  Google Scholar 

  10. Xu, S.; Xu, C.; Liu, Y.; Hu, Y. F.; Yang, R. S.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S. et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749–4753.

    Article  Google Scholar 

  11. Jha, S.; Qian, J. C.; Kutsay, O.; Kovac Jr, J. K.; Luan, C. Y.; Zapien, J. A.; Zhang, W. J.; Lee, S. T.; Bello, I. Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology 2011, 22, 2452–2.

    Google Scholar 

  12. Zhang, S. G.; Zhang, X. W.; Si, F. T.; Dong, J. J.; Wang, J. X.; Liu, X.; Yin, Z. G.; Gao, H. L. Ordered ZnO nanorods-based heterojunction light-emitting diodes with grapheme current spreading layer. Appl. Phys. Lett. 2012, 101, 1211–4.

    Google Scholar 

  13. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 2013, 7, 752–758.

    Article  Google Scholar 

  14. Yang, Q.; Wang, W. H.; Xu, S.; Niu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012–4017.

    Article  Google Scholar 

  15. Yang, Q.; Liu, Y.; Pang, C.; Chen, J.; Wen, X.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607–613.

    Article  Google Scholar 

  16. Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, in press, DOI: 10.1016/j.nanoen.2014.11-033.

  17. Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271–2274.

    Article  Google Scholar 

  18. Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Pen, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722.

    Article  Google Scholar 

  19. Chen, P. L.; Ma, X. Y.; Yang, D. R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J. Appl. Phys. 2007, 101, 0531–3.

    Google Scholar 

  20. Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Excitonrelated electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett. 2009, 94, 2411–0.

    Article  Google Scholar 

  21. Lee, S. W.; Cho, H. D.; Panin, G.; Kang, T. W. Vertical ZnO nanorod/Si contact light-emitting diode. Appl. Phys. Lett. 2011, 98, 0931–0.

    Google Scholar 

  22. Jung, B. O.; Lee, J. H.; Lee, J. Y.; Kim, J. H.; Cho, H. K. High-purity ultraviolet electroluminescence from n-ZnO nanowires/p+-Si heterostructure LEDs with i-MgO film as carrier control layer. J. Electrochem. Soc. 2012, 159, H102–H106.

  23. Chan, V. F.; Su, W.; Zhang, C. X.; Wu, Z. L.; Tang, Y.; Sun, X. Q.; Xu, H. J. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays. Opt. Express 2012, 20, 24280–2427.

    Google Scholar 

  24. Tsai, J. K.; Shih, J. H.; Wu, T. C.; Meen, T. H. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes. Nanoscale Res. Lett. 2012, 7, 6–4.

    Article  Google Scholar 

  25. Xian, F. L.; Wang, X. X.; Xu, L. H.; Li, X. Y.; Bai, W. F. Color tunable electroluminescence from Co-doped ZnO nanorods/p-Si heterojunction. J. Lumin. 2013, 144, 154–157.

    Article  Google Scholar 

  26. Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia, X.; Yang, Y. J.; Chang, H. J.; Huang, H. M. et al. Electroluminescence from ZnO/Si-nanotips lightemitting diodes. Nano Lett. 2009, 9, 1839–1843.

    Article  Google Scholar 

  27. Weber, J.; Alonso, M. I. Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 1989, 40, 5683–5693.

    Article  Google Scholar 

  28. Rieger, M. M.; Vogl, P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGeysubstrates. Phys. Rev. B 1993, 48, 14276–1427.

    Article  Google Scholar 

  29. Fischetti, M. V.; Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234–2252.

    Article  Google Scholar 

  30. Moontragoon, P.; Ikonic, Z.; Harrison, P. Band structure calculations of Si-Ge-Sn alloys: Achieving direct band gap materials. Semicond. Sci. Technol. 2007, 22, 742–748.

    Article  Google Scholar 

  31. Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire laser based on the absorption-emission-absorption process. Adv. Mater. 2013, 25, 833–837.

    Article  Google Scholar 

  32. Yang, Z. Y.; Wang, D. L.; Meng, C.; Wu, Z. M.; Wang, Y.; Ma, Y. G.; Dai, L.; Liu, X. W.; Hasan, T.; Liu, X. et al. Broudly defining lasing wavelengths in single bandgap-graded semiconductor nanowire. Nano. Lett. 2014, 14, 3153–3159.

    Article  Google Scholar 

  33. Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 1585–1607.

    Article  Google Scholar 

  34. Bai, G. X.; Tsang, M. K.; Hao, J. H. Tuning the luminescence of phosphors: Beyond conventional chemical method. Adv. Optical Mater. 2015, 3, 431–462.

    Article  Google Scholar 

  35. Han, C. B.; He, C.; Li, X. J. Near-infrared light emission from a GaN/Si nanoheterostructure array. Adv. Mater. 2011, 23, 4811–4814.

    Article  Google Scholar 

  36. Han, C. B.; He, C.; Meng, X. B.; Wan, Y. R.; Tian, Y. T.; Zhang, Y. J.; Li, X. J. Effect of annealing treatment on electroluminescence from GaN/Si nanoheterostructure array. Opt. Express 2012, 20, 5636–5643.

    Article  Google Scholar 

  37. Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 2000, 76, 2011–2013.

    Article  Google Scholar 

  38. Zhang, R.; Yin, P. G.; Wang, N.; Guo, L. Photoluminnescence and Raman scattering of ZnO nanorods. Solid state Sci. 2009, 11, 865–869.

    Article  Google Scholar 

  39. Hartmann, J. M.; Bogumilowicz, Y.; Holliger, P.; Laugier, F.; Truche, R.; Rolland, G.; Séméria, M. N.; Renard, V.; Olshanetsky, E. B.; Estibals, O. et al. Reduced pressure chemical vapour deposition of SiGe virtual substrates for high mobility devices. Semicond. Sci. Technol. 2004, 19, 311–318.

    Article  Google Scholar 

  40. Liang, R. R.; Zhang, K.; Yang, Z. R.; Xu, Y.; Wang, J.; Xu, J. Fabrication and characterization of strained Si material using SiGe virtualsubstrate for high mobility devices. J. Semicond. 2007, 28, 1518–1522.

    Google Scholar 

  41. Li, B. B.; Yu, D. P.; Zhang, S. L. Raman spectral study of silicon nanowires. Phys. Rev. B 1999, 59, 1645–1648.

    Article  Google Scholar 

  42. Winer, K.; Alonso, M. I. Raman spectra of c-Si1-xGex alloys. Phys. Rev. B 1989, 39, 10056–1002.

    Article  Google Scholar 

  43. Torres, V. J. B.; Coutinho, J.; Briddon, P. R.; Barroso, M. Ab-initio vibrational properties of SiGe alloys. Thin Solid films 2008, 517, 395–397.

    Article  Google Scholar 

  44. Pagès, O.; Souhabi, J.; Torres V. J. B.; Postnikov, A. V.; Rustagi, K. C. Re-examination of the SiGe Raman spectra: Percolation/one-dimensional-pixel scheme and ab initio calculations. Phys. Rev. B 2012, 86, 0452–1.

    Article  Google Scholar 

  45. Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B. G.; Callahan, M. J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 1652–2.

    Article  Google Scholar 

  46. Huang, Y. Q.; Liu, M. D.; Li, Z.; Zeng, Y. K.; Liu, S. B. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mat. Sci. Eng. B 2003, 97, 111–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renrong Liang or Caofeng Pan.

Additional information

Authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Liang, R., Dong, L. et al. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Ge x alloy heterojunction. Nano Res. 8, 2676–2685 (2015). https://doi.org/10.1007/s12274-015-0774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0774-2

Keywords

Navigation