Skip to main content
Log in

High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A high-safety and low-cost route is important in the development of sodium-ion batteries, especially for large-scale stationary battery systems. An aqueous sodium-ion battery is demonstrated using a single NASICON-structured Na2VTi(PO4)3 material with the redox couples of V4+/V3+ and Ti4+/Ti3+ working on the cathode and anode, respectively. The symmetric full cell fabricated based on the bi-functional electrode material exhibits a well-defined voltage plateau at ∼1.2 V and an impressive cycling stability with capacity retention of 70% exceeding 1,000 cycles at 10C (1C = 62 mA·g–1). This study provides a feasible strategy for obtaining high-safety and low-cost rechargeable batteries using a single active material in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  Google Scholar 

  2. Lu, J.; Chen, Z. H.; Ma, Z. F.; Fan, F.; Curtiss, L. A.; Amine, K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 2016, 11, 1031–1038.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  5. Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. I. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta 2013, 101, 59–65.

    Article  Google Scholar 

  6. Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem., Int. Ed. 2014, 53, 5892–5896.

    Article  Google Scholar 

  7. Shanmugam, R.; Lai, W. Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion batteries. ECS Electrochem. Lett. 2014, 3, A23–A25.

    Article  Google Scholar 

  8. Zhang, L.; Dou, S. X.; Liu, H. K; Huang, Y. H.; Hu, X. L. Symmetric electrodes for electrochemical energy-storage devices. Adv. Sci. 2016, 3, 1600115.

    Article  Google Scholar 

  9. Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

    Article  Google Scholar 

  10. Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.

    Article  Google Scholar 

  11. Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

    Article  Google Scholar 

  12. You, Y.; Sang, Z. S.; Liu, J. P. Recent developments on aqueous sodium-ion batteries. Mater. Technol. 2016, 31, 501–509.

    Article  Google Scholar 

  13. Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

    Article  Google Scholar 

  14. Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407–411.

    Article  Google Scholar 

  15. Gao, H. C; Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem., Int. Ed. 2016, 55, 12768–12772.

    Article  Google Scholar 

  16. Zhang, Q.; Liao, C. Y.; Zhai, T. Y.; Li, H. Q. A high rate 1.2 V aqueous sodium-ion battery based on all NASICON structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochim. Acta 2016, 196, 470–478.

    Article  Google Scholar 

  17. Zhu, C. B.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 2014, 14, 2175–2180.

    Article  Google Scholar 

  18. Liu, T. F.; Wang, B.; Gu, X. X.; Wang, L.; Ling, M.; Liu, G.; Wang, D. L.; Zhang, S. Q. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 2016, 30, 756–761.

    Article  Google Scholar 

  19. Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 2011, 158, A1067–A1070.

    Article  Google Scholar 

  20. Chen, L.; Shao, H. Z.; Zhou, X. F.; Liu, G. Q.; Jiang, J.; Liu, Z. P. Water-mediated cation intercalation of openframework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 2016, 7, 11982.

    Article  Google Scholar 

  21. Song, W. X.; Ji, X. B.; Zhu, Y. R.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 2014, 1, 871–876.

    Article  Google Scholar 

  22. Zhang, L. D.; Huang, T.; Yu, A. S. Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. J. Alloys Compd. 2015, 646, 522–527.

    Article  Google Scholar 

  23. Mason, C. W.; Lange, F. Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 2015, 4, A79–A82.

    Article  Google Scholar 

  24. Liu, J.; Zhang, J. G.; Yang, Z. G.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L. Y.; Hu, J. Z.; Wang, C. M.; Xiao, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 2013, 23, 929–946.

    Article  Google Scholar 

  25. Guo, S. H.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew. Chem., Int. Ed. 2015, 54, 11701–11705.

    Article  Google Scholar 

  26. Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Huangfu, K. L.; Wang, X. W.; Huang, Y. L.; Ji, X. B.A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 17681–17687.

    Article  Google Scholar 

  27. Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

    Article  Google Scholar 

  28. Shen, W.; Wang, C.; Liu, H. M.; Yang, W. S. Towards highly stable storage of sodium ions: A porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chemistry 2013, 19, 14712–14718.

    Article  Google Scholar 

  29. Kumar, P. R.; Jung, Y. H.; Lim, C. H.; Kim, D. K. Na3V2O2x (PO4)2F3–2x : A stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 2015, 3, 6271–6275.

    Article  Google Scholar 

  30. Lim, S. Y.; Kim, H.; Shakoor, R. A.; Jung, Y.; Choi, J. W. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: A combined experimental and theoretical study. J. Electrochem. Soc. 2012, 159, A1393–A1397.

    Article  Google Scholar 

  31. Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3Nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 2014, 26, 3545–3553.

    Article  Google Scholar 

  32. Vujković, M.; Mitrić, M.; Mentus, S. High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions. J. Power Sources 2015, 288, 176–186.

    Article  Google Scholar 

  33. Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844–1855.

    Article  Google Scholar 

  34. Song, J. J.; Park, S.; Gim, J.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Kim, J. High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J. Mater. Chem. A 2016, 4, 7815–7822.

    Article  Google Scholar 

  35. Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760–765.

    Article  Google Scholar 

  36. Hou, Z. G.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 2015, 3, 1400–1404.

    Article  Google Scholar 

  37. Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2system. Adv. Energy Mater. 2013, 3, 290–294.

    Article  Google Scholar 

  38. Pasta, M.; Wessells, C. D.; Liu, N.; Nelson, J.; McDowell, M. T.; Huggins, R. A.; Toney, M. F.; Cui, Y. Full openframework batteries for stationary energy storage. Nat. Commun. 2014, 5, 3007.

    Article  Google Scholar 

  39. Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 2014, 116, 512–517.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Chinese government under the “Thousand Youth Talents Program”, Zhejiang Province Science Fund for Distinguished Young Scholars (No. LR16B060001), and Key Technology and Supporting Platform of Genetic Engineering of Materials under State’s Key Project of Research and Development Plan (No. 2016YFB0700600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, T., Chen, C. et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3 . Nano Res. 11, 490–498 (2018). https://doi.org/10.1007/s12274-017-1657-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1657-5

Keywords

Navigation