Skip to main content
Log in

Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Replacing Pt-based electrocatalysts for the oxygen reduction reaction (ORR) with high performance and low-cost non-precious metal catalysts is crucial for the commercialization of fuel cells. Herein, we present a highly efficient Fe-N-C porous ORR electrocatalyst with FeNxmoieties promoted by Fe2N nanoparticles derived from Fe-doped zeolitic imidazolate framework. The best-performing Fe-N-C/HPC-NH3catalyst exhibits a superior ORR activity with an onset (E0) and half-wave (E1/2) potential of 0.945 and 0.803 V (RHE), respectively, which is comparable to those of the commercial Pt/C in acidic media. Probing and acid-leaching experiments prove that FeNx moieties play an important role in the ORR and the Fe2N can further improve the ORR activity. Density functional theory calculation reveals a synergistic effect that the existence of Fe2N weakens the adsorption of ORR intermediates on active sites and lowers the reaction free energy of the potential limiting step, thus facilitating the ORR. Both experimental evidence and theoretical analysis for the enhancement of ORR activity by Fe2N decoration in Fe-N-C catalyst might inspire a new strategy for rational design of high performance non-precious metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  2. Wu, G; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  3. Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.

    Article  Google Scholar 

  4. Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 127, 10045–10048.

    Article  Google Scholar 

  5. Yasuda, S.; Furuya, A.; Uchibori, Y.; Kim, J.; Murakoshi, K. Iron-nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 738–744.

    Article  Google Scholar 

  6. Wu, G; Mack, N. H.; Gao, W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous Lithium-O2battery cathodes. ACS Nano 2012, 6, 9764–9776.

    Article  Google Scholar 

  7. Lim, K. H.; Kim, H. Nitrogen-doped carbon catalysts derived from ionic liquids in the presence of transition metals for the oxygen reduction reaction. Appl. Catal. B: Environ. 2014, 158–159, 355–360.

    Article  Google Scholar 

  8. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  Google Scholar 

  9. Zhang, Y.; Huang, L. B.; Jiang, W. J.; Zhang, X.; Chen, Y. Y.; Wei, Z. D.; Wan, L. J.; Hu, J. S. Sodium chloride-assisted green synthesis of a 3D Fe-N-C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7781–7787.

    Article  Google Scholar 

  10. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

    Article  Google Scholar 

  11. Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

    Article  Google Scholar 

  12. Yang, X. D.; Zheng, Y. P.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C. K.; Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 2017, 7, 139–145.

    Article  Google Scholar 

  13. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

    Article  Google Scholar 

  14. Sun, T.; Jiang, Y. F.; Wu, Q.; Du, L. Y.; Zhang, Z. Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium? Catal. Sci. Technol. 2017, 7, 51–55.

    Article  Google Scholar 

  15. Wang, M.; Yang, Y. S.; Liu, X. B.; Pu, Z. H.; Kou, Z. K.; Zhu, P. P.; Mu, S. C. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. Nanoscale 2017, 9, 7641–7649.

    Article  Google Scholar 

  16. Wang, L.; Yin, J.; Zhao, L.; Tian, C. G.; Yu, P.; Wang, J. Q.; Fu, H. G. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022–3024.

    Article  Google Scholar 

  17. Xiao, J. W.; Xu, Y. Y.; Xia, Y. T.; Xi, J. B.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129.

    Article  Google Scholar 

  18. Kramm, U. I.; Herrmann-Geppert, I.; Bogdanoff, P.; Fiechter, S. Effect of an ammonia treatment on structure, composition, and oxygen reduction reaction activity of Fe-N-C catalysts. J. Phys. Chem. C 2011, 115, 23417–23427.

    Article  Google Scholar 

  19. Meng, H.; Larouche, N.; Lefèvre, M.; Jaouen, F.; Stansfield, B.; Dodelet, J. P. Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 2010, 55, 6450–6461.

    Article  Google Scholar 

  20. Liu, P.; Cheng, Q. Q.; Chen, C.; Zou, L. L.; Zou, Z. Q.; Yang, H. Preparation and oxygen reduction reaction catalytic performance of Fe, N co-doped carbon nanofibers with encapsulated iron nitride. Chem. J. Chin. Univ. 2018, 39, 2492–2499.

    Google Scholar 

  21. Deng, Y. J.; Dong, Y. Y.; Wang, G. H.; Sun, K. L.; Shi, X. D.; Zheng, L.; Li, X. H.; Liao, S. J. Well-defined ZIF-derived Fe-N codoped carbon nanoframes as efficient oxygen reduction catalysts. ACS Appl. Mater. Interfaces 2017, 9, 9699–9709.

    Article  Google Scholar 

  22. Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.

    Article  Google Scholar 

  23. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  Google Scholar 

  24. Zhao, R.; Xia, W.; Lin, C.; Sun, J. L.; Mahmood, A.; Wang, Q. F.; Qiu, B.; Tabassum, H.; Zou, R. Q. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon 2017, 114, 284–290.

    Article  Google Scholar 

  25. Gupta, S.; Zhao, S.; Ogoke, O.; Lin, Y.; Xu, H.; Wu, G. Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts through tuning of nitrogen/carbon precursors. ChemSusChem 2017, 10, 774–785.

    Article  Google Scholar 

  26. Jaouen, F.; Herranz, J.; Lefèvre, M.; Dodelet, J. P.; Kramm, U. I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A. et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2009, 1, 1623–1639.

    Article  Google Scholar 

  27. Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? J. Phys. Chem. B 2006, 110, 5553–5558.

    Article  Google Scholar 

  28. Zeng, S. S.; Lyu, F. C.; Nie, H. J.; Zhan, Y. W.; Bian, H. D.; Tian, Y. Y.; Li, Z.; Wang, A. W.; Lu, J.; Li, Y. Y. Facile fabrication of N/S-doped carbon nanotubes with Fe3O4 nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. J. Mater. Chem. A 2017, 5, 13189–13195.

    Article  Google Scholar 

  29. Li, G. N.; Zhang, J. J.; Li, W. S.; Fan, K.; Xu, C. J. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor. Nanoscale 2018, 10, 9252–9260.

    Article  Google Scholar 

  30. Peng, H. L.; Mo, Z. Y.; Liao, S. J.; Liang, H. G.; Yang, L. J.; Luo, F.; Song, H. Y.; Zhong, Y. L.; Zhang, B. Q. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.

    Article  Google Scholar 

  31. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  Google Scholar 

  32. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 127, 8297–8301.

    Article  Google Scholar 

  33. Liu, X.; Chen, C.; Cheng, Q. Q.; Zou, L. L.; Zou, Z. Q.; Yang, H. Binary nitrogen precursor-derived porous Fe-N-S/C catalyst for efficient oxygen reduction reaction in a Zn-air battery. Catalysts 2018, 8, 158.

    Article  Google Scholar 

  34. Choi, I. A.; Kwak, D. H.; Han, S. B.; Park, J. Y.; Park, H. S.; Ma, K. B.; Kim, D. H.; Won, J. E.; Park, K. W. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction. Appl. Catal. B: Environ. 2017, 211, 235–244.

    Article  Google Scholar 

  35. Wang, J. P.; Han, G. K.; Wang, L. G.; Du, L.; Chen, G. Y.; Gao, Y. Z.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Zuo, P. J. et al. ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 2018, 14, 1704282.

    Article  Google Scholar 

  36. Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe-N-C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205–1211.

    Article  Google Scholar 

  37. Liang, W.; Chen, J. X.; Liu, Y. W.; Chen, S. L. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal. 2014, 4, 4170–4177.

    Article  Google Scholar 

  38. Xiao, H.; Shao, Z. G.; Zhang, G.; Gao, Y.; Lu, W. T.; Yi, B. L. Fe-N-carbon black for the oxygen reduction reaction in sulfuric acid. Carbon 2013, 57, 443–451.

    Article  Google Scholar 

  39. Wang, T.; Chen, Z. X.; Chen, Y. G.; Yang, L. J.; Yang, X. D.; Ye, J. Y.; Xia, H. P.; Zhou, Z. Y.; Sun, S. G. Identifying the active site of N-doped graphene for oxygen reduction by selective chemical modification. ACS Energy Lett. 2018, 3, 986–991.

    Article  Google Scholar 

  40. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  41. Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

    Article  Google Scholar 

  42. Xuan, C. J.; Hou, B. S.; Xia, W. W.; Peng, Z. K.; Shen, T.; Xin, H. L.; Zhang, G. A.; Wang, D. L. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: An efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10731–10739.

    Article  Google Scholar 

  43. Wang, R. W.; Yan, T. T.; Han, L. P.; Chen, G. R.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction. J. Mater. Chem. A 2018, 6, 5752–5761.

    Article  Google Scholar 

  44. Wan, X.; Wang, H. J.; Yu, H.; Peng, F. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst. J. Power Sources 2017, 346, 80–88.

    Article  Google Scholar 

  45. Yang, W. X.; Liu, X. J.; Chen, L. L.; Liang, L.; Jia, J. B. A metal-organic framework devised Co-N doped carbon microsphere/nanofiber hybrid as a free-standing 3D oxygen catalyst. Chem. Commun. 2017, 53, 4034–4037.

    Article  Google Scholar 

  46. Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

    Article  Google Scholar 

  47. Nandan, R.; Gautam, A.; Nanda, K. K. Maximizing the utilization of Fe-NjC/CN, centres for an air-cathode material and practical demonstration of metal-air batteries. J. Mater. Chem. A 2017, 5, 20252–20262.

    Article  Google Scholar 

  48. Nerskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  49. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

    Article  Google Scholar 

  50. Kattel, S.; Wang, G. F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key Research and Development Program of China (No. 2017YFA0206500) and the National Natural Science Foundation of China (Nos. 21802161, 21673275, and 21533005) are greatly appreciated. We thank the HPC Platform of ShanghaiTech University for computing time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yang or Hui Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, H., Chen, C. et al. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 12, 1651–1657 (2019). https://doi.org/10.1007/s12274-019-2415-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2415-7

Keywords

Navigation