Skip to main content
Log in

Moiré-pattern-modulated electronic structures in Sb2Te3/graphene heterostructure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moiré superlattice has recently been found in topological insulators, which can lead to periodic modulation on the electronic structure. In this work, we report the low-temperature scanning tunneling microscopy study of Sb2Te3 films grown on graphitized 4H-SiC. We find that substrate temperature can strongly influence the rotation angles between Sb2Te3 film and graphene substrate. Three kinds of moiré patterns are observed at the first quintuple layer Sb2Te3 film under different substrate temperatures. One shows complicated patterns with a rotation angle of nearly 0° relative to the substrate, another just exhibits simple 1 × 1 structure with a rotation angle of 30°. Other rotation angle like 8.2° is observed at higher substrate temperature as well, which is relatively rare. Comparison of the dI/dV curves from Sb2Te3 films with different moiré patterns indicates that the superstructure can offer degrees of freedom in tailoring electronic structure. This work may stimulate the further study on the moiré modulation to the electronic properties of topological insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pong, W. T.; Durkan, C. A review and outlook for an anomaly of scanning tunnelling microscopy (STM): Superlattices on graphite. J. Phys. D Appl. Phys. 2005, 38, R329–R355.

    Article  CAS  Google Scholar 

  2. Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733.

    Article  CAS  Google Scholar 

  3. Andrei, E. Y.; MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 2020, 19, 1265–1275.

    Article  CAS  Google Scholar 

  4. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  5. Carr, S.; Fang, S. A.; Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 2020, 5, 748–763.

    Article  CAS  Google Scholar 

  6. Hennighausen, Z.; Lane, C.; Buda, I. G.; Mathur, V. K.; Bansil, A.; Kar, S. Evidence of a purely electronic two-dimensional lattice at the interface of TMD/Bi2Se3 heterostructures. Nanoscale 2019, 11, 15929–15938.

    Article  CAS  Google Scholar 

  7. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Article  Google Scholar 

  8. Song, C. L.; Wang, Y. L.; Jiang, Y. P.; Zhang, Y.; Chang, C. Z.; Wang, L. L.; He, K.; Chen, X.; Jia, J. F.; Wang, Y. Y. et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 2010, 97, 143118.

    Article  Google Scholar 

  9. Schouteden, K.; Li, Z.; Chen, T. S.; Song, F. Q.; Partoens, B.; Van Haesendonck, C.; Park, K. Moiré superlattices at the topological insulator Bi2Te3. Sci. Rep. 2016, 6, 20278.

    Article  CAS  Google Scholar 

  10. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  CAS  Google Scholar 

  11. Wang, T.; Yuan, N. F. Q.; Fu, L. Moiré surface states and enhanced superconductivity in topological insulators. Phys. Rev. X 2021, 11, 021024.

  12. Jiang, Y. P.; Sun, Y. Y.; Chen, M.; Wang, Y. L.; Li, Z.; Song, C. L.; He, K.; Wang, L. L.; Chen, X.; Xue, Q. K. et al. Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Phys. Rev. Lett. 2012, 108, 066809.

    Article  Google Scholar 

  13. Plucinski, L. P.; Herdt, A.; Fahrendorf, S.; Bihlmayer, G.; Mussler, G.; Döring, S.; Kampmeier, J.; Matthes, F.; Bürgler, D. E.; Grützmacher, D. et al. Electronic structure, surface morphology, and topologically protected surface states of Sb2Te3 thin films grown on Si(111). J. Appl. Phys. 2013, 113, 053706.

    Article  Google Scholar 

  14. Wang, G.; Zhu, X. G.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C.; Liu, Y.; Dai, X.; Fang, Z. et al. Atomically smooth ultrathin films of topological insulator Sb2Te3. Nano Res. 2010, 3, 874–880.

    Article  CAS  Google Scholar 

  15. Zhang, T.; Ha, J.; Levy, N.; Kuk, Y.; Stroscio, J. Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films. Phys. Rev. Lett. 2013, 111, 056803.

    Article  Google Scholar 

  16. Jiang, Y. P.; Wang, Y. L.; Chen, M.; Li, Z.; Song, C. L.; He, K.; Wang, L. L.; Chen, X.; Ma, X. C.; Xue, Q. K. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 2012, 108, 016401.

    Article  Google Scholar 

  17. Hass, J.; De Heer, W. A.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, 323202.

    Article  Google Scholar 

  18. Xu, J. P.; Liu, C. H.; Wang, M. X.; Ge, J. F.; Liu, Z. L.; Yang, X. J.; Chen, Y.; Liu, Y.; Xu, Z. A.; Gao, C. L. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 2014, 112, 217001.

    Article  Google Scholar 

  19. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B Condens Matter. 1985, 31, 805–813.

    Article  CAS  Google Scholar 

  20. Omambac, K. M.; Hattab, H.; Brand, C.; Jnawali, G.; N’Diaye, A. T.; Coraux, J.; Van Gastel, R.; Poelsema, B.; Michely, T.; Heringdorf, F. J. M. Z. et al. Temperature-controlled rotational epitaxy of graphene. Nano Lett. 2019, 19, 4594–4600.

    Article  CAS  Google Scholar 

  21. Lu, C. I.; Butler, C. J.; Huang, J. K.; Chu, Y. H.; Yang, H. H.; Wei, C. M.; Li, L. J.; Lin, M. T. Moiré-related in-gap states in a twisted MoS2/graphite heterojunction. npj 2D Mater. Appl. 2017, 1, 24.

    Article  Google Scholar 

  22. Hermann, K. Periodic overlayers and moiré patterns: Theoretical studies of geometric properties. J. Phys. Condens. Matter 2012, 24, 314210.

    Article  Google Scholar 

  23. Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

    Article  Google Scholar 

  24. Shao, Z. B.; Fu, Z. G.; Li, S. J.; Cao, Y.; Bian, Q.; Sun, H. G.; Zhang, Z. Y.; Gedeon, H.; Zhang, X.; Liu, L. J. et al. Strongly compressed few-layered SnSe2 films grown on a SrTiO3 substrate: The coexistence of charge ordering and enhanced interfacial superconductivity. Nano Lett. 2019, 19, 5304–5312.

    Article  CAS  Google Scholar 

  25. Zhang, Y. M.; Fan, J. Q.; Wang, W. L.; Zhang, D.; Wang, L. L.; Li, W.; He, K.; Song, C. L.; Ma, X. C.; Xue, Q. K. Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure. Phys. Rev. B 2018, 98, 220508.

    Article  CAS  Google Scholar 

  26. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Van Den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

    Article  CAS  Google Scholar 

  27. Kim, S.; Mo, J. H.; Jang, K. S. High-performance n-type carbon nanotubes doped by oxidation of neighboring Sb2Te3 for a flexible thermoelectric generator. ACS Appl. Mater. Interfaces 2020, 12, 43778–43784.

    Article  CAS  Google Scholar 

  28. Wang, Y. L.; Jiang, Y. P.; Chen, M.; Li, Z.; Song, C. L.; Wang, L. L.; He, K.; Chen, X.; Ma, X. C.; Xue, Q. K. Scanning tunneling microscopy of interface properties of Bi2Se3 on FeSe. J. Phys. Condens. Matter 2012, 24, 475604.

    Article  Google Scholar 

  29. Zhang, S.; He, D. J.; Huang, P.; Wang, F. Moiré pattern at graphene/Al (111) interface: Experiment and simulation. Mater. Des. 2021, 201, 109509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of China (Nos. 2019YFA0308600, 2020YFA0309000, 2016YFA0301003, and 2016YFA0300403), the National Natural Science Foundation of China (NSFC) (Nos. 11521404, 11634009, 92065201, 11874256, 11874258, 12074247, 11790313, and 11861161003), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000) and the Science and Technology Commission of Shanghai Municipality (Nos. 2019SHZDZX01, 19JC1412701, and 20QA1405100) for partial support. GYW is funded by China Postdoctoral Science Foundation (No. 2021M693095)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Jia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Wang, G., Liu, C. et al. Moiré-pattern-modulated electronic structures in Sb2Te3/graphene heterostructure. Nano Res. 15, 1115–1119 (2022). https://doi.org/10.1007/s12274-021-3613-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3613-7

Keywords

Navigation