Skip to main content
Log in

Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low-dimensional inorganic nanostructures such as quantum dots as well as one- and two-dimensional nanostructures are widely studied and already used in high-performance infrared photodetectors. These structures feature large surface-to-volume ratios, tunable light absorption, and electron-limiting effects. This article reviews the state-of-the-art research of low-dimensional inorganic nanostructures and their application for infrared photodetection. Thanks to nano-structuring, a narrow bandgap, hybrid systems, surface-plasmon resonance, and doping, many common semiconductors have the potential to be used for infrared detection. The basic approaches towards infrared detection are summarized. Furthermore, a selection of very important and special nanostructured materials and their remarkable infrared-detection properties are introduced (e.g., black phosphorus, graphene-based, MoX2-based, III–VII group). Each section in this review describes the corresponding photosensitive properties in detail. The article concludes with an outlook of anticipated future developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, S.; Liu, J. H.; Niu, X. N.; Liang, B. L.; Fu, G. S.; Li, Z. Q.; Wang, S. F.; Ren, K. L.; Pan, C. F. Piezophototronic effect enhanced photoresponse of the flexible Cu(In,Ga)Se2(CIGS) heterojunction photodetectors. Adv. Funct. Mater. 2018, 28, 1707311.

    Article  Google Scholar 

  2. Xu, K. M.; Zhou, W. J.; Ning, Z. J. Integrated structure and device engineering for high performance and scalable quantum dot Infrared photodetectors. Small 2020, 16, 2003397.

    Article  CAS  Google Scholar 

  3. Guan, X. W.; Yu, X. C.; Periyanagounder, D.; Benzigar, M. R.; Huang, J. K.; Lin, C. H.; Kim, J.; Singh, S.; Hu, L.; Liu, G. Z. et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708.

    Article  CAS  Google Scholar 

  4. Yang, M.; Han, Q.; Liu, X. C.; Han, J. Y.; Zhao, Y. F.; He, L.; Gou, J.; Wu, Z. M.; Wang, X. R.; Wang, J. Ultrahigh stability 3D Ti Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 30, 1909659.

    Article  CAS  Google Scholar 

  5. Tadeo, I. J.; Mukhokosi, E. P.; Krupanidhi, S. B.; Umarji, A. M. Low-cost VO2 (M1) thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture for IR photodetection. RSC Adv. 2019, 9, 9983–9992.

    Article  CAS  Google Scholar 

  6. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

  7. Ismailov, N. J. Performance improving of small-dimension IR photodetectors. Tech. Phys. Lett. 2011, 37, 458–460.

    Article  CAS  Google Scholar 

  8. Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.

    Article  CAS  Google Scholar 

  9. Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2008, 2, 833–840.

    Article  CAS  Google Scholar 

  10. Kinch, M. A. HgCdTe: Recent trends in the ultimate IR semiconductor. J. Electron. Mater. 2010, 39, 1043–1052.

    Article  CAS  Google Scholar 

  11. Guo, Y. B.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J. Mater. Chem. C, 2017, 5, 1436–1442.

    Article  CAS  Google Scholar 

  12. Martinez, B.; Ramade, J.; Livache, C.; Goubet, N.; Chu, A.; Gréboval, C.; Qu, J. L.; Watkins, W. L.; Becerra, L.; Dandeu, E. et al. HgTe nanocrystal inks for extended short - wave infrared detection. Adv. Opt. Mater. 2019, 7, 1900348.

    Article  Google Scholar 

  13. Jeong, M. K.; Kang, J.; Park, D.; Yim, S.; Jung, I. H. A conjugated polyelectrolyte interfacial modifier for high performance near-infrared quantum-dot photodetectors. J. Mater. Chem. C 2020, 8, 2542–2550.

    Article  Google Scholar 

  14. Mukherjee, S.; Jana, S.; Sinha, T. K.; Das, S.; Ray, S. K. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids. Nanoscale Adv. 2019, 1, 3279–3287.

    Article  CAS  Google Scholar 

  15. Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.

    Article  Google Scholar 

  16. Wang, F. K.; Zhang, Y.; Gao Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

    Article  Google Scholar 

  17. Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711–6718.

    Article  CAS  Google Scholar 

  18. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  CAS  Google Scholar 

  19. Xie, Y.; Liang, F.; Wang, D.; Chi, S. M.; Yu, H. H.; Lin, Z. S.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y.; Wu Y. C. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.

    Article  Google Scholar 

  20. Zhang, S. K.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Wang, H. L.; Zhu, L. Q.; Jiang, W.; Liu, J. J.; Sun, L. X.; Lin, T. et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156.

    Article  CAS  Google Scholar 

  21. Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

    Article  Google Scholar 

  22. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    Article  CAS  Google Scholar 

  23. Nandi, S.; Tripathi, R.; Adhikary, G. D.; Kumar, P.; Misra, A. Ultrahigh infrared photoresponse in titanium sesquioxide at mott-insulator transition. Adv. Mater. Interfaces 2020, 7, 2001091.

    Article  CAS  Google Scholar 

  24. Xie, L.; Wang, J.; Li, J.; Li, C.; Zhang, Y.; Zhu, B. P.; Guo, Y. Z.; Wang, Z. C.; Zhang, K. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater. 2020, 6, 2000962.

    Google Scholar 

  25. Jang, H.; Seok, Y.; Choi, Y.; Cho, S. H.; Watanabe, K.; Taniguchi, T.; Lee, K. High-performance near-infrared photodetectors based on surface-doped InSe. Adv. Funct. Mater. 2021, 31, 2006788.

    Article  CAS  Google Scholar 

  26. Rajeswaran, B.; Tadeo, I. J.; Umarji, A. M. IR photoresponsive VO2 thin films and electrically assisted transition prepared by single-step chemical vapor deposition. J. Mater. Chem. C 2020, 8, 12543–12550.

    Article  CAS  Google Scholar 

  27. Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

    Article  CAS  Google Scholar 

  28. Jana, M. K.; Chithaiah, P.; Murali, B.; Krupanidhi, S. B.; Biswas, K.; Rao, C. N. R. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface. J. Mater. Chem. C 2013, 1, 6184–6187.

    Article  CAS  Google Scholar 

  29. Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 2021, 14, 1955–1960.

    Article  CAS  Google Scholar 

  30. Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

    Article  Google Scholar 

  31. Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493.

    Article  CAS  Google Scholar 

  32. Kim, D.; Kim, D. H.; Lee, J. H.; Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 2013, 110, 196802.

    Article  Google Scholar 

  33. Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

    Article  CAS  Google Scholar 

  34. Jo, S. H.; Lee, H. W.; Shim, J.; Heo, K.; Kim, M.; Song, Y. J.; Park, J. H. Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 2018, 5, 1700423.

    Article  Google Scholar 

  35. Ran, W. H.; Wang, L. L.; Zhao, S. F.; Wang, D. P.; Yin, R. Y.; Lou, Z.; Shen, G. Z. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419.

    Article  CAS  Google Scholar 

  36. Chen, Y. F.; Ma, W. L.; Tan, C. W.; Luo, M.; Zhou, W.; Yao, N. J.; Wang, H.; Zhang, L. L.; Xu, T. F.; Tong, T. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554.

    Article  CAS  Google Scholar 

  37. Lei, S. D.; Sobhani, A.; Wen, F. F.; George, A.; Wang, Q. Z.; Huang, Y. H.; Dong, P.; Li, B.; Najmaei, S.; Bellah, J. et al. Ternary CuIn7Se11: Towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26, 7666–7672.

    Article  CAS  Google Scholar 

  38. Dong, Y. F.; Chen, M. Y.; Yiu, W. K.; Zhu, Q.; Zhou, G. D.; Kershaw, S. V.; Ke, N.; Wong, C. P.; Rogach, A. L.; Zhao, N. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 nm at room temperature. Adv. Sci. 2020, 7, 2000068.

    Article  CAS  Google Scholar 

  39. Mochalov, L.; Logunov, A.; Prokhorov, I.; Sazanova, T.; Kudrin, A.; Yunin, P.; Zelentsov, S.; Letnianchik, A.; Starostin, N.; Boreman, G. et al. Plasma-chemical synthesis of lead sulphide thin films for near-IR photodetectors. Plasma Chem. Plasma Process. 2021, 41, 493–506.

    Article  CAS  Google Scholar 

  40. Lan, X. Z.; Voznyy, O.; Kiani, A.; de Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

    Article  CAS  Google Scholar 

  41. Zhang, Z. L.; Chen, Z. H.; Yuan, L.; Chen, W. J.; Yang, J. F.; Wang, B.; Wen, X. M.; Zhang, J. B.; Hu, L.; Stride, J. A. et al. A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals. Adv. Mater. 2017, 29, 1703214.

    Article  Google Scholar 

  42. Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Böberl, M.; Hesser, G.; Yarema, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M. et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.

    Article  CAS  Google Scholar 

  43. Jagtap, A.; Goubet, N.; Livache, C.; Chu, A.; Martinez, B.; Gréboval, C.; Qu, J. L.; Dandeu, E.; Becerra, L.; Witkowski, N. et al. Short wave infrared devices based on HgTe nanocrystals with air stable performances. J. Phys. Chem. C. 2018, 122, 14979–14985.

    Article  CAS  Google Scholar 

  44. Chen, M. L.; Lan, X. Z.; Tang, X.; Wang, Y. Y.; Hudson, M. H.; Talapin, D. V.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics 2019, 6, 2358–2365.

    Article  Google Scholar 

  45. Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H. Quintero-Bermudez, R. et al. Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 2017, 29, 1703627.

    Article  Google Scholar 

  46. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  CAS  Google Scholar 

  47. Yang, C.; Feng, S. L.; Tang, L. L.; Shen, J.; Wei, X. Z.; Shi, H. F. Electrochemical epitaxial grown PbS nanorods array on graphene film for high-performance photodetector. Adv. Mater. Interfaces 2020, 8, 2001464.

    Article  Google Scholar 

  48. Georgitzikis, E.; Malinowski, P. E.; Maes, J.; Hadipour, A.; Hens, Z.; Heremans, P.; Cheyns, D. Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater. 2018, 28, 1804502.

    Article  Google Scholar 

  49. Schornbaum, J.; Winter, B.; Schießl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798–5806.

    Article  CAS  Google Scholar 

  50. Sliz, R.; Lejay, M.; Fan, J. Z.; Choi, M. J.; Kinge, S.; Hoogland, S.; Fabritius, T.; de Arquer, F. P. G.; Sargent, E. H. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 2019, 13, 11988–11995.

    Article  CAS  Google Scholar 

  51. Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics, 2016, 10, 81–92.

    Article  CAS  Google Scholar 

  52. Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953–2103960.

    Article  CAS  Google Scholar 

  53. Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

    Article  CAS  Google Scholar 

  54. Gomathi, P. T.; Sahatiya, P.; Badhulika, S. Large-area, flexible broadband photodetector based on ZnS-MoS2 hybrid on paper substrate. Adv. Funct. Mater. 2017, 27, 1701611.

    Article  Google Scholar 

  55. Thurakkal, S.; Feldstein, D.; Perea-Causín, R.; Malic, E.; Zhang, X. Y. The art of constructing black phosphorus nanosheet based heterostructures: from 2D to 3D. Adv. Mater. 2021, 33, 2005254.

    Article  CAS  Google Scholar 

  56. Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

    Article  CAS  Google Scholar 

  57. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    Article  CAS  Google Scholar 

  58. Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

    Article  CAS  Google Scholar 

  59. Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-Vis-IR photodetectors. Nano Energy 2018, 49, 200–208.

    Article  CAS  Google Scholar 

  60. Castilla, S.; Vangelidis, I.; Pusapati, V. V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 2020, 11, 4872.

    Article  CAS  Google Scholar 

  61. Zhang, J.; Hong, H.; Lian, C.; Ma, W.; Xu, X. Z.; Zhou, X.; Fu, H. X.; Liu, K. H.; Meng, S. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 2017, 4, 1700086.

    Article  Google Scholar 

  62. Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

    Article  CAS  Google Scholar 

  63. Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

    Article  CAS  Google Scholar 

  64. Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

    Article  CAS  Google Scholar 

  65. Xue, H.; Wang, Y. D.; Dai, Y. Y.; Kim, W.; Jussila, H.; Qi, M.; Susoma, J.; Ren, Z. Y.; Dai, Q.; Zhao, J. L. et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv. Funct. Mater. 2018, 28, 1804388.

    Article  Google Scholar 

  66. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  CAS  Google Scholar 

  67. Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

    Article  Google Scholar 

  68. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268–1700275.

    Article  Google Scholar 

  69. Berencén, Y.; Prucnal, S.; Liu, F.; Skorupa, I.; Hübner, R.; Rebohle, L.; Zhou, S. Q.; Schneider, H.; Helm, M.; Skorupa, W. Room-temperature short-wavelength infrared Si photodetector. Sci. Rep. 2017, 7, 43688.

    Article  Google Scholar 

  70. Gao, S.; Wang, Z. Q.; Wang, H. D.; Meng, F. X.; Wang, P. F.; Chen, S.; Zeng, Y. H.; Zhao, J. L.; Hu, H. G.; Cao, R. et al. Graphene/MoS2/graphene vertical heterostructure-based broadband photodetector with high performance. Adv. Mater. Interfaces 2020, 8, 2001730.

    Article  Google Scholar 

  71. Manga, K. K.; Wang, J. Z.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids. Adv. Mater. 2012, 24, 1697–1702.

    Article  CAS  Google Scholar 

  72. Lähnemann, J.; Ajay, A.; Den Hertog, M. I.; Monroy, E. Near-infrared intersubband photodetection in GaN/AlN nanowires. Nano Lett. 2017, 17, 6954–6960.

    Article  Google Scholar 

  73. Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

    Article  CAS  Google Scholar 

  74. Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface Plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.

    Article  Google Scholar 

  75. Chang, K. E.; Kim, C.; Yoo, T. J.; Kwon, M. G.; Heo, S.; Kim, S. Y.; Hyun, Y.; Yoo, J. I.; Ko, H. C.; Lee, B. H. High-responsivity near-infrared photodetector using gate-modulated graphene/germanium schottky junction. Adv. Electro. Mater. 2019, 5, 1800957.

    Article  Google Scholar 

  76. Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

    Article  CAS  Google Scholar 

  77. Dai, Y. J.; Wang, X. F.; Peng, W. B.; Xu, C.; Wu, C. S.; Dong, K.; Liu, R. Y.; Wang, Z. L. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyrophototronic effect: An approach for photosensing below bandgap energy. Adv. Mater. 2018, 30, 1705893.

    Article  Google Scholar 

  78. Prakash, N.; Kumar, G.; Singh, M.; Barvat, A.; Pal, P.; Singh, S. P.; Singh, H. K.; Khanna, S. P. Binary multifunctional ultrabroadband self-powered g-C3N4/Si heterojunction high-performance photodetector. Adv. Opt. Mater. 2018, 6, 1800191.

    Article  Google Scholar 

  79. Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

    Article  Google Scholar 

  80. Chang, Y. R.; Ho, P. H.; Wen, C. Y.; Chen, T. P.; Li, S. S.; Wang, J. Y.; Li, M. K.; Tsai, C. A.; Sankar, R.; Wang, W. H. et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector. ACS Photonics 2017, 4, 2930–2936.

    Article  CAS  Google Scholar 

  81. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ASC Nano 2015, 9, 1886–1894.

    Article  CAS  Google Scholar 

  82. Yang, M.; Wang, J.; Zhao, Y. F.; He, L.; Ji, C. H.; Liu, X. C.; Zhou, H. X.; Wu, Z. M.; Wang, X. R.; Jiang, Y. D. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2019, 13, 755–763.

    Article  CAS  Google Scholar 

  83. Sun, J. M.; Peng, M.; Zhang, Y. S.; Zhang, L.; Peng, R.; Miao, C. C.; Liu, D.; Han, M. M.; Feng, R. F.; Ma, Y. D. et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920–5929.

    Article  CAS  Google Scholar 

  84. Umezu, I.; Warrender, J. M.; Charnvanichborikarn, S.; Kohno, A.; Williams, J. S.; Tabbal, M.; Papazoglou, D. G.; Zhang, X. C.; Aziz, M. J. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys. 2013, 113, 213501–213507.

    Article  Google Scholar 

  85. Lourenço, M. A.; Hughes, M. A.; Lai, K. T.; Sofi, I. M.; Ludurczak, W.; Wong, L.; Gwilliam, R. M.; Homewood, K. P. Silicon-modified rare-earth transitions-a new route to near- and mid-IR photonics. Adv. Funct. Mater. 2016, 26, 1986–1994.

    Article  Google Scholar 

  86. Xu, X. B.; Chueh, C. C.; Jing, P. F.; Yang, Z. B.; Shi, X. L.; Zhao, T.; Lin, L. Y.; Jen, A. K. Y. High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 2017, 27, 1701053.

    Article  Google Scholar 

  87. Abbasi, M.; Evans, C. I.; Chen, L. Y.; Natelson, D. Single metal photodetectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 2020, 14, 17535–17542.

    Article  CAS  Google Scholar 

  88. Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.

    Article  CAS  Google Scholar 

  89. Dubey, A.; Mishra, R.; Hsieh, Y. H.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Gwo, S.; Yen, T. J. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 2020, 7, 2002274.

    Article  CAS  Google Scholar 

  90. Fang, Z. Y.; Liu, Z.; Wang, Y. M.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813.

    Article  CAS  Google Scholar 

  91. Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749–3754.

    Article  CAS  Google Scholar 

  92. Nordin, L.; Kamboj, A.; Petluru, P.; Shaner, E.; Wasserman, D. All-epitaxial integration of long-wavelength infrared plasmonic materials and detectors for enhanced responsivity. ACS Photonics 2020, 7, 1950–1956.

    Article  CAS  Google Scholar 

  93. Huang, H. X.; Zhang, D. H.; Wei, N.; Wang, S.; Peng, L. M. Plasmon-induced enhancement of infrared detection using a carbon nanotube diode. Adv. Opt. Mater. 2017, 5, 1600865.

    Article  Google Scholar 

  94. Peng, R. M.; Khaliji, K.; Youngblood, N.; Grassi, R.; Low, T.; Li, M. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 2017, 17, 6315–6320.

    Article  CAS  Google Scholar 

  95. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

    Article  CAS  Google Scholar 

  96. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  CAS  Google Scholar 

  97. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  CAS  Google Scholar 

  98. Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.

    Article  CAS  Google Scholar 

  99. Liu, Q. R.; Hu, S. Y.; Zhang, C. X.; Ouyang, H.; Jiang, T. Polarization-dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus. Adv. Opt. Mater. 2021, 9, 2001562.

    Article  CAS  Google Scholar 

  100. Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419–5424.

    Article  CAS  Google Scholar 

  101. Vabbina, P.; Choudhary, N.; Chowdhury, A. A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213.

    Article  CAS  Google Scholar 

  102. Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, M. A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

    Article  Google Scholar 

  103. Li, G. H.; Liu, L.; Wu, G.; Chen, W.; Qin, S. J.; Wang, Y.; Zhang, T. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small 2016, 12, 5019–5026.

    Article  CAS  Google Scholar 

  104. Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. Highperformance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102.

    Article  CAS  Google Scholar 

  105. Moein, T.; Gailevičius, D.; Katkus, T.; Ng, S. H.; Lundgaard, S.; Moss, D. J.; Kurt, H.; Mizeikis, V.; Staliūnas, K.; Malinauskas, M. et al. Optically-thin broadband graphene-membrane photodetector. Nanomaterials 2020, 10, 407.

    Article  CAS  Google Scholar 

  106. Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

    Article  Google Scholar 

  107. Luo, W. G.; Cao, Y. F.; Hu, P. G.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. F.; Zhang, X. H.; Wang, K. Y. Gate tuning of highperformance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423.

    Article  CAS  Google Scholar 

  108. Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602.

    Article  CAS  Google Scholar 

  109. Lee H.; Bak S.; Kim J.; Lee H. The effect of the dopant’s reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 2021, 14, 198–204.

    Article  CAS  Google Scholar 

  110. Wu, Z. Q.; Yang, J. L.; Manjunath, N. K.; Zhang, Y. J.; Feng, S. R.; Lu, Y. H.; Wu, J. H.; Zhao, W. W.; Qiu, C. Y.; Li, J. F. et al. Gap-mode surface-Plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.

    Article  Google Scholar 

  111. Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

    Article  CAS  Google Scholar 

  112. Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950–960.

    Article  CAS  Google Scholar 

  113. Xu, H.; Han, X.; Dai, X.; Liu, W.; Wu, J.; Zhu, J.; Kim, D.; Zou, G.; Sablon, K. A.; Sergeev, A.; Guo, Z.; Liu, H. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561–1706569.

    Article  Google Scholar 

  114. Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 2018, 30, 1705542–1705551.

    Article  Google Scholar 

  115. Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L. F.; Liang, S. J. et al. Asymmetric schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 2018, 28, 1800657–1800666.

    Article  Google Scholar 

  116. Deng, J. N.; Zong, L. Y.; Zhu, M. S.; Liao, F. Y.; Xie, Y. Y.; Guo, Z. X.; Liu, J.; Lu, B. R.; Wang, J. L.; Hu, W. D. et al. MoS2/HfO2/Silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 2019, 29, 1906242.

    Article  CAS  Google Scholar 

  117. Hu, X.; Li, X.Y.; Li, G. Y.; Ji, T.; Ai, F. J.; Wu, J.H.; Ha, E.N.; Hu, J. Q. Recent progress of methods to enhance photovoltaic effect for self-powered heterojunction photodetectors and their applications in inorganic low-dimensional structures. Adv. Funct. Mater. 2021, 31, 2011284–2011306.

    Article  CAS  Google Scholar 

  118. Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

    Article  Google Scholar 

  119. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

    Article  CAS  Google Scholar 

  120. Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.

    Article  CAS  Google Scholar 

  121. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Article  Google Scholar 

  122. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

    CAS  Google Scholar 

  123. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  124. Wu, D.; Jia, C.; Shi, F. H.; Zeng, L. H.; Lin P.; Dong, L.; Shi Z. F.; Tian Y. T.; Li X. J.; Jie J. S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A, 2020, 8, 3632–3642.

    Article  CAS  Google Scholar 

  125. Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.

    Article  CAS  Google Scholar 

  126. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  127. Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227.

    Article  CAS  Google Scholar 

  128. Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K.; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022–7028.

    Article  CAS  Google Scholar 

  129. Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 14, 9098–9106.

    Article  CAS  Google Scholar 

  130. Dai, M. J.; Chen, H. Y.; Feng, R.; Feng, W.; Hu, Y. X.; Yang, H. H.; Liu, G. B.; Chen, X. S.; Zhang, J.; Xu, C. Y. et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface Plasmon resonance and asymmetric Schottky junction. ACS Nano 2018, 12, 8739–8747.

    Article  CAS  Google Scholar 

  131. Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

    Article  CAS  Google Scholar 

  132. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

    Article  CAS  Google Scholar 

  133. Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129.

    Article  Google Scholar 

  134. Qin, J. K.; Qiu, G; He, W.; Jian, J.; Si, M. W.; Duan, Y. Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H. Y.; Shao, W. Z. et al. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.

    Article  Google Scholar 

  135. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 2016, 26, 4551–4560.

    Article  CAS  Google Scholar 

  136. Afzal, A. M.; Javed, Y.; Akhtar Shad, N.; Iqbal, M. Z.; Dastgeer, G.; Munir Sajid, M.; Mumtaz, S., Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/rhenium diselenide van Der Waals heterojunction diode. Nanoscale 2020, 12, 3455–3468.

    Article  CAS  Google Scholar 

  137. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21561031, 51972055, and 21701135), the Shenzhen Science and Technology Research Project (No. JCYJ20180508152903208), the Shenzhen Pengcheng Scholar Program, the Guangdong Basic and Applied Basic Research Foundation(No. 2020A1515010258) and Shenzhen Bay Laboratory Open Fund (No. SZBL2020090501002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Hu or Junqing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wu, J., Wu, M. et al. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 15, 805–817 (2022). https://doi.org/10.1007/s12274-021-3634-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3634-2

Keywords

Navigation