Skip to main content
Log in

Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is one of the malignant brain tumors with high mortality and no curative treatments. Abnormally elevated vascular endothelial growth factor (VEGF) in GBM seriously disrupts the blood brain barrier (BBB) with an increased permeability, resulting in poor outcome and prognosis. RNAi interference has shown strong potential to inhibit VEGF expression, thus it is necessary to development an effective and safe gene delivery system possessing the ability to cross the BBB and target GBM cells. This study aims to explore the anti-GBM effect of angiopep-2 (Ap) peptide modified reactive oxygen species (ROS) cleavable thioketal (TK) linked glycolipid-like nanocarrier (CSTKSA) delivering anti-VEGF siRNA (R), termed as Ap-CSTKSA/R complexes. Ap functionalized modification produced an enhanced cellular uptake and a stronger bio-distribution of Ap-CSTKSA/R complexes in U87 MG cells and brain tumor tissues, respectively. Ap-CSTKSA/R complexes exhibited great superiority in GBM growth inhibition and finally translated into the longest survival period mainly via receptor-mediated targeting delivery, VEGF gene silencing accompanied with remarkable angiogenesis inhibition, and suppressed expression of caveolin-1 which is involved in BBB functional regulation in the occurrence and treatment of GBM. The study indicated that Ap functionalization on ROS-responsive glycolipid-like copolymer exhibits a promising and effective gene delivery platform for GBM targeted treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agliardi, G.; Liuzzi, A. R.; Hotblack, A.; de Feo, D.; Núñez, N.; Stowe, C. L.; Friebel, E.; Nannini, F.; Rindlisbacher, L.; Roberts, T. A. et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat. Commun. 2021, 12, 444.

    Article  CAS  Google Scholar 

  2. Lam, F. C.; Morton, S. W.; Wyckoff, J.; Han, T. L. V.; Hwang, M. K.; Maffa, A.; Balkanska-Sinclair, E.; Yaffe, M. B.; Floyd, S. R.; Hammond, P. T. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun. 2018, 9, 1991.

    Article  Google Scholar 

  3. Xie, H.; Lu, W. C. Inhibition of transient receptor potential vanilloid 4 decreases the expressions of caveolin-1 and caveolin-2 after focal cerebral ischemia and reperfusion in rats. Neuropathology 2018, 38, 337–346.

    Article  CAS  Google Scholar 

  4. Oldrini, B.; Vaquero-Siguero, N.; Mu, Q. H.; Kroon, P.; Zhang, Y.; Galán-Ganga, M.; Bao, Z. S.; Wang, Z.; Liu, H. J.; Sa, J. K. et al. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat. Commun. 2020, 11, 3883.

    Article  Google Scholar 

  5. Huang, S. X.; Shao, K.; Yang, L.; Kuang, Y. Y.; Li, J. F.; An, S.; Guo, Y. B.; Ma, H. J.; Jiang, C. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 2013, 7, 2860–2871.

    Article  CAS  Google Scholar 

  6. Holash, J.; Maisonpierre, P. C.; Compton, D.; Boland, P.; Alexander, C. R.; Zagzag, D.; Yancopoulos, G. D.; Wiegand, S. J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999, 284, 1994–1998.

    Article  CAS  Google Scholar 

  7. Keunen, O.; Johansson, M.; Oudin, A.; Sanzey, M.; Rahim, S. A. A.; Fack, F.; Thorsen, F.; Taxt, T.; Bartos, M.; Jirik, R. et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl. Acad. Sci. USA 2011, 108, 3749–3754.

    Article  CAS  Google Scholar 

  8. Tan, Y. N.; Zhu, Y.; Wen, L. J.; Meng, T. T.; Liu, X.; Yang, X. Q.; Dai, S. H.; Yuan, H.; Hu, F. Q. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials 2018, 154, 169–181.

    Article  CAS  Google Scholar 

  9. Feng, Q.; Yu, M. Z.; Wang, J. C.; Hou, W. J.; Gao, L. Y.; Ma, X. F.; Pei, X. W.; Niu, Y. J.; Liu, X. Y.; Qiu, C. et al. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials 2014, 35, 5028–5038.

    Article  CAS  Google Scholar 

  10. Karlsson, J.; Tzeng, S. Y.; Hemmati, S.; Luly, K. M.; Choi, O.; Rui, Y.; Wilson, D. R.; Kozielski, K. L.; Quiñones-Hinojosa, A.; Green, J. J. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy. Adv. Funct. Mater. 2021, 31, 2009768.

    Article  CAS  Google Scholar 

  11. Yang, Z. Z.; Li, J. Q.; Wang, Z. Z.; Dong, D. W.; Qi, X. R. Tumortargeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 2014, 35, 5226–5239.

    Article  CAS  Google Scholar 

  12. Han, L.; Tang, C.; Yin, C. H. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials 2015, 60, 42–52.

    Article  CAS  Google Scholar 

  13. Ruan, S. B.; Yuan, M. Q.; Zhang, L.; Hu, G. L.; Chen, J. T.; Cun, X. L.; Zhang, Q. Y.; Yang, Y. T.; He, Q.; Gao, H. L. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425–435.

    Article  CAS  Google Scholar 

  14. Wei, X. L.; Gao, J.; Zhan, C. Y.; Xie, C.; Chai, Z. L.; Ran, D. N.; Ying, M.; Zheng, P.; Lu, W. Y. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J. Control. Release 2015, 218, 13–21.

    Article  CAS  Google Scholar 

  15. Chung, M. F.; Chia, W. T.; Wan, W. L.; Lin, Y. J.; Sung, H. W. Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 2015, 137, 12462–12465.

    Article  CAS  Google Scholar 

  16. Wu, J.; Zhao, L. L.; Xu, X. D.; Bertrand, N.; Choi, W. I.; Yameen, B.; Shi, J. J.; Shah, V.; Mulvale, M.; Maclean, J. L. et al. Hydrophobic cysteine poly(disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem., Int. Ed. 2015, 54, 9218–9223.

    Article  CAS  Google Scholar 

  17. Li, Q.; Wen, Y.; You, X. R.; Zhang, F. H.; Shah, V.; Chen, X.; Tong, D. D.; Wei, X. J.; Yin, L. L.; Wu, J. et al. Development of a reactive oxygen species (ROS)-responsive nanoplatform for targeted oral cancer therapy. J. Mater. Chem. B 2016, 4, 4675–4682.

    Article  CAS  Google Scholar 

  18. Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124.

    Article  Google Scholar 

  19. Wen, L. J.; Wang, K.; Zhang, F. T.; Tan, Y. N.; Shang, X. W.; Zhu, Y.; Zhou, X. Q.; Yuan, H.; Hu, F. Q. AKT activation by SC79 to transiently re-open pathological blood brain barrier for improved functionalized nanoparticles therapy of glioblastoma. Biomaterials 2020, 237, 119793.

    Article  CAS  Google Scholar 

  20. Knowland, D.; Arac, A.; Sekiguchi, K. J.; Hsu, M.; Lutz, S. E.; Perrino, J.; Steinberg, G. K.; Barres, B. A.; Nimmerjahn, A.; Agalliu, D. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 2014, 82, 603–617.

    Article  CAS  Google Scholar 

  21. Xia, C. Y.; Zhang, Z.; Xue, Y. X.; Wang, P.; Liu, Y. H. Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J. Neuro-Oncol. 2009, 94, 41–50.

    Article  CAS  Google Scholar 

  22. Hu, Y. W.; Du, Y. Z.; Liu, N.; Liu, X.; Meng, T. T.; Cheng, B. L.; He, J. B.; You, J.; Yuan, H.; Hu, F. Q. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J. Control. Release 2015, 206, 91–100.

    Article  CAS  Google Scholar 

  23. Tan, Y. N.; Zhu, Y.; Wen, L. J.; Yang, X. Q.; Liu, X.; Meng, T. T.; Dai, S. H.; Ping, Y.; Yuan, H.; Hu, F. Q. Mitochondria-responsive drug release along with heat shock mediated by multifunctional glycolipid micelles for precise cancer chemo-phototherapy. Theranostics 2019, 9, 691–707.

    Article  CAS  Google Scholar 

  24. Wen, L. J.; Tan, Y. N.; Dai, S. H.; Zhu, Y.; Meng, T. T.; Yang, X. Q.; Liu, Y. P.; Liu, X.; Yuan, H.; Hu, F. Q. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv. 2017, 24, 1843–1855.

    Article  CAS  Google Scholar 

  25. Wen, L. J.; Wen, C. L.; Zhang, F. T.; Wang, K.; Yuan, H.; Hu, F. Q. siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma. Nanomedicine 2020, 28, 102218.

    Article  CAS  Google Scholar 

  26. Liu, Y. P.; Dai, S. H.; Wen, L. J.; Zhu, Y.; Tan, Y. N.; Qiu, G. X.; Meng, T. T.; Yu, F. Y.; Yuan, H.; Hu, F. Q. Enhancing drug delivery for overcoming angiogenesis and improving the phototherapy efficacy of glioblastoma by ICG-loaded glycolipid-like micelles. Int. J. Nanomed. 2020, 15, 2717–2732.

    Article  CAS  Google Scholar 

  27. Xin, F. L.; Wu, M.; Cai, Z. X.; Zhang, X. L.; Wei, Z. W.; Liu, X. L.; Liu, J. F. Tumor microenvironment triggered cascade-activation nanoplatform for synergistic and precise treatment of hepatocellular carcinoma. Adv. Healthc. Mater. 2021, 10, 2002036.

    Article  CAS  Google Scholar 

  28. Yang, J. C.; Pan, S. J.; Gao, S. Q.; Li, T. Y.; Xu, H. P. CO/chemosensitization/antiangiogenesis synergistic therapy with H2O2-responsive diselenide-containing polymer. Biomaterials 2021, 271, 120721.

    Article  CAS  Google Scholar 

  29. Liu, J. W.; Meng, T. T.; Yuan, M.; Wen, L. J.; Cheng, B. L.; Liu, N.; Huang, X.; Hong, Y.; Yuan, H.; Hu, F. Q. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int. J. Nanomed. 2016, 11, 6713–6725.

    Article  CAS  Google Scholar 

  30. Deng, J. M.; Huang, Q.; Wang, F.; Liu, Y. J.; Wang, Z. B.; Wang, Z. G.; Zhang, Q. T.; Lei, B.; Cheng, Y. The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J. Mol. Neurosci. 2012, 46, 677–687.

    Article  CAS  Google Scholar 

  31. Wang, X. J.; Peng, C. H.; Zhang, S.; Xu, X. L.; Shu, G. F.; Qi, J.; Zhu, Y. F.; Xu, D. M.; Kang, X. Q.; Lu, K. J. et al. Polysialic-acid-based micelles promote neural regeneration in spinal cord injury therapy. Nano Lett. 2019, 19, 829–838.

    Article  CAS  Google Scholar 

  32. Yi, X. Q.; Hu, J. J.; Dai, J.; Lou, X. D.; Zhao, Z. J.; Xia, F.; Tang, B. Z. Self-guiding polymeric prodrug micelles with two aggregation-induced emission photosensitizers for enhanced chemo-photodynamic therapy. ACS Nano 2021, 15, 3026–3037.

    Article  CAS  Google Scholar 

  33. Pucci, C.; Pasquale, D. D.; Marino, A.; Martinelli, C.; Lauciello, S.; Ciofani, G. Hybrid magnetic nanovectors promote selective glioblastoma cell death through a combined effect of lysosomal membrane permeabilization and chemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 29037–29055.

    Article  CAS  Google Scholar 

  34. Fan, K. L.; Jia, X. H.; Zhou, M.; Wang, K.; Conde, J.; He, J. Y.; Tian, J.; Yan, X. Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 2018, 12, 4105–4115.

    Article  CAS  Google Scholar 

  35. Tapeinos, C.; Pandit, A. Physical, chemical, and biological structures based on ROS-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 2016, 28, 5553–5585.

    Article  CAS  Google Scholar 

  36. Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P. O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. Biophy. Acta 2009, 1788, 842–857.

    Article  CAS  Google Scholar 

  37. Chen, Y.; Liu, L. H. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 640–665.

    Article  CAS  Google Scholar 

  38. Zhu, Y.; Meng, T. T.; Tan, Y. N.; Yang, X. Q.; Liu, Y. P.; Liu, X.; Yu, F. Y.; Wen, L. J.; Dai, S. H.; Yuan, H. et al. Negative surface shielded polymeric micelles with colloidal stability for intracellular endosomal/lysosomal escape. Mol. Pharm. 2018, 15, 5374–5386.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Wei Yin (Core Facilities, School of Medicine, Zhejiang University) for her assistance with confocal microscopy. The research was supported by the National Natural Science Foundation of China (No. 81973267), the National Science Foundation of Zhejiang Province, China (No. D19H30001), the Project of Gannan Medical University (No. ZD201903), and the PhD Start-up Fund of Gannan Medical University (No. QD201908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengtian Zhang or Fuqiang Hu.

Electronic Supplementary Material

12274_2021_3686_MOESM1_ESM.pdf

Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Peng, Y., Wang, K. et al. Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics. Nano Res. 15, 1455–1465 (2022). https://doi.org/10.1007/s12274-021-3686-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3686-3

Keywords

Navigation