Skip to main content
Log in

Light hybrid micro/nano-robots: From propulsion to functional signals

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Untethered motile micro/nanorobots (MNRs) that can operate in hard-to-reach small space and perform noninvasive tasks in cellular level hold bright future in healthcare, nanomanufacturing, biosensing, and environmental remediation. Light, as a flexible encoding method with tunable freedom of intensity, wavelength, polarization, and propagation direction, endows unique spatial-temporal precision and dexterity to the manipulation of MNRs. Meanwhile, light has been extensively investigated as functional signals in bioimaging, phototherapy, as well as photoelectrochemical reactions. The hybridization of light and other actuation method ushers in novel MNRs with broadened design space, improved controllability, and advanced functionality. In this review, the fundamental mechanisms of light-driven MNRs will be revisited. On top of it, light hybrid systems, coupling with magnetic, electric, chemical, or ultrasound field, will be reviewed, with light for propulsion or as functional signal. The rational hybridization of multiple stimulus in MNRs not only promises simple combination of two driving forces, but more importantly, motivates rethinking of light-driven MNRs for unprecedented applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. Nanomachines: Fundamentals and Applications; Wiley-VCH: Germany, 2013.

    Book  Google Scholar 

  2. Venugopalan, P. L.; de Ávila, B. E. F.; Pal, M.; Ghosh, A.; Wang, J. Fantastic voyage of nanomotors into the cell. ACS Nano 2020, 14, 9423–9439.

    Article  CAS  Google Scholar 

  3. Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36.

    Google Scholar 

  4. Mavroidis, C.; Dubey, A.; Yarmush, M. L. Molecular machines. Annu. Rev. Biomed. Eng. 2004, 6, 363–395.

    Article  CAS  Google Scholar 

  5. Goel, A.; Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 2008, 3, 465–475.

    Article  CAS  Google Scholar 

  6. Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.

    Article  CAS  Google Scholar 

  7. Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 2015, 115, 10081–10206.

    Article  CAS  Google Scholar 

  8. Ma, X.; Hortelão, A. C.; Patiño, T.; Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano 2016, 10, 9111–9122.

    Article  CAS  Google Scholar 

  9. Wang, W.; Chiang, T. Y.; Velegol, D.; Mallouk, T. E. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 2013, 135, 10557–10565.

    Article  CAS  Google Scholar 

  10. Novotny, F.; Wang, H.; Pumera, M. Nanorobots: Machines squeezed between molecular motors and micromotors. Chem 2020, 6, 867–884.

    Article  CAS  Google Scholar 

  11. Ji, F. T.; Jin, D. D.; Wang, B.; Zhang, L. Light-driven hovering of a magnetic microswarm in fluid. ACS Nano 2020, 14, 6990–6998.

    Article  CAS  Google Scholar 

  12. Wu, C. J.; Dai, J.; Li, X. F.; Gao, L.; Wang, J. Z.; Liu, J.; Zheng, J.; Zhan, X. J.; Chen, J. W.; Cheng, X. et al. Ion-exchange enabled synthetic swarm. Nat. Nanotechnol. 2021, 16, 288–295.

    Article  CAS  Google Scholar 

  13. Mou, F. Z.; Li, X. F.; Xie, Q.; Zhang, J. H.; Xiong, K.; Xu, L. L.; Guan, J. G. Active micromotor systems built from passive particles with biomimetic predator-prey interactions. ACS Nano 2020, 14, 406–414.

    Article  CAS  Google Scholar 

  14. Wang, H.; Pumera, M. Coordinated behaviors of artificial micro/nanomachines: From mutual interactions to interactions with the environment. Chem. Soc. Rev. 2020, 49, 3211–3230.

    Article  Google Scholar 

  15. Wang, J.; Gao, W. Nano/microscale motors: Biomedical opportunities and challenges. ACS Nano 2012, 6, 5745–5751.

    Article  CAS  Google Scholar 

  16. Guix, M.; Mayorga-Martinez, C. C.; Merkoci, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 2014, 114, 6285–6322.

    Article  CAS  Google Scholar 

  17. Sengupta, S.; Ibele, M. E.; Sen, A. Fantastic voyage: Designing self-powered nanorobots. Angew. Chem., Int. Ed. 2012, 51, 8434–8445.

    Article  CAS  Google Scholar 

  18. Aziz, A.; Pane, S.; Iacovacci, V.; Koukourakis, N.; Czarske, J.; Menciassi, A.; Medina-Sánchez, M.; Schmidt, O. G. Medical imaging of microrobots: Toward in vivo applications. ACS Nano 2020, 14, 10865–10893.

    Article  CAS  Google Scholar 

  19. Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 132, 14474–14478.

    Article  Google Scholar 

  20. Lv, J. Y.; Xing, Y.; Xu, T. L.; Zhang, X. J.; Du, X. Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. Appl. Mater. Today 2021, 23, 101034.

    Article  Google Scholar 

  21. Wang, J. Z.; Xiong, Z.; Zheng, J.; Zhan, X. J.; Tang, J. Y. Light-driven micro/nanomotor for promising biomedical tools: Principle, challenge, and prospect. Acc. Chem. Res. 2018, 51, 1957–1965.

    Article  CAS  Google Scholar 

  22. Li, J. X.; Gao, W.; Dong, R. F.; Pei, A.; Sattayasamitsathit, S.; Wang, J. Nanomotor lithography. Nat. Commun. 2014, 5, 5026.

    Article  CAS  Google Scholar 

  23. Manesh, K. M.; Balasubramanian, S.; Wang, J. Nanomotor-based “writing” of surface microstructures. Chem. Commun. 2010, 46, 5704–5706.

    Article  CAS  Google Scholar 

  24. Li, J. X.; de Ávila, B. E. F.; Gao, W.; Zhang, L. F.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, eaam6431.

    Article  Google Scholar 

  25. Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 2010, 1, 36.

    Article  CAS  Google Scholar 

  26. Yuan, K. S.; Bujalance-Fernández, J.; Jurado-Sánchez, B.; Escarpa, A. Light-driven nanomotors and micromotors: Envisioning new analytical possibilities for bio-sensing. Microchim. Acta 2020, 187, 581.

    Article  CAS  Google Scholar 

  27. Jurado-Sánchez, B.; Escarpa, A. Milli, micro and nanomotors: Novel analytical tools for real-world applications. TrAC Trends Anal. Chem. 2016, 84, 48–59.

    Article  CAS  Google Scholar 

  28. Moo, J. G. S.; Pumera, M. Chemical energy powered nano/micro/macromotors and the environment. Chem.—Eur. J. 2015, 21, 58–72.

    Article  CAS  Google Scholar 

  29. Jurado-Sánchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V. V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated carbon janus micromotors for efficient water purification. Small 2015, 11, 499–506.

    Article  CAS  Google Scholar 

  30. Dong, R. F.; Cai, Y. P.; Yang, Y. R.; Gao, W.; Ren, B. Y. Photocatalytic micro/nanomotors: From construction to applications. Acc. Chem. Res. 2018, 51, 1940–1947.

    Article  CAS  Google Scholar 

  31. Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.

    Article  CAS  Google Scholar 

  32. Yu, S. M.; Cai, Y.; Wu, Z. G.; He, Q. Recent progress on motion control of swimming micro/nanorobots. VIEW 2021, 2, 20200113.

    Article  Google Scholar 

  33. Sitti, M.; Wiersma, D. S. Pros and cons: Magnetic versus optical microrobots. Adv. Mater. 2020, 32, 1906766.

    Article  CAS  Google Scholar 

  34. Wang, J. Z.; Xiong, Z.; Tang, J. Y. The encoding of light-driven micro/nanorobots: From single to swarming systems. Adv. Intell. Syst. 2021, 3, 2000170.

    Article  Google Scholar 

  35. Šipová-Jungová, H.; Andrén, D.; Jones, S.; Käll, M. Nanoscale inorganic motors driven by light: Principles, realizations, and opportunities. Chem. Rev. 2020, 120, 269–287.

    Article  CAS  Google Scholar 

  36. Ren, L. Q.; Wang, W.; Mallouk, T. E. Two forces are better than one: Combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc. Chem. Res. 2018, 51, 1948–1956.

    Article  CAS  Google Scholar 

  37. Huang, Y.; Liang, Z. X.; Alsoraya, M.; Guo, J. H.; Fan, D. L. Light-gated manipulation of micro/nanoparticles in electric fields. Adv. Intell. Syst. 2020, 2, 1900127.

    Article  Google Scholar 

  38. Yu, H.; Tang, W. T.; Mu, G. Y.; Wang, H. C.; Chang, X. C.; Dong, H. J.; Qi, L. Q.; Zhang, G. Y.; Li, T. L. Micro-/nanorobots propelled by oscillating magnetic fields. Micromachines 2018, 9, 540.

    Article  Google Scholar 

  39. Xu, T. L.; Xu, L. P.; Zhang, X. J. Ultrasound propulsion of micro/nanomotors. Appl. Mater. Today 2017, 9, 493–503.

    Article  Google Scholar 

  40. Chen, C. R.; Soto, F.; Karshalev, E.; Li, J. X.; Wang, J. Hybrid nanovehicles: One machine, two engines. Adv. Funct. Mater. 2019, 29, 1806290.

    Article  CAS  Google Scholar 

  41. Xu, L. L.; Mou, F. Z.; Gong, H. T.; Luo, M.; Guan, J. G. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926.

    Article  CAS  Google Scholar 

  42. Chen, H. X.; Zhao, Q. L.; Du, X. M. Light-powered micro/nanomotors. Micromachines 2018, 9, 41.

    Article  Google Scholar 

  43. Yoon, S.; Kim, M.; Jang, M.; Choi, Y.; Choi, W.; Kang, S.; Choi, W. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020, 2, 141–158.

    Article  Google Scholar 

  44. Luker, G. D.; Luker, K. E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1–4.

    Article  Google Scholar 

  45. Zhi, D. F.; Yang, T.; O’Hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control Release 2020, 325, 52–71.

    Article  CAS  Google Scholar 

  46. Hu, J. J.; Cheng, Y. J.; Zhang, X. Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 2018, 10, 22657–22672.

    Article  CAS  Google Scholar 

  47. Wang, J. Z.; Xiong, Z.; Zhan, X. J.; Dai, B. H.; Zheng, J.; Liu, J.; Tang, J. Y. A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 2017, 29, 1701451.

    Article  CAS  Google Scholar 

  48. Dai, B. H.; Wang, J. Z.; Xiong, Z.; Zhan, X. J.; Dai, W.; Li, C. C.; Feng, S. P.; Tang, J. Y. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 2016, 11, 1087–1092.

    Article  CAS  Google Scholar 

  49. Zhou, C.; Zhang, H. P.; Tang, J. Y.; Wang, W. Photochemically powered AgCl janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir 2018, 34, 3289–3295.

    Article  CAS  Google Scholar 

  50. Huang, L. Y.; Moran, J. L.; Wang, W. Designing chemical micromotors that communicate—A survey of experiments. JCIS Open 2021, 2, 100006.

    Article  Google Scholar 

  51. Prieve, D. C.; Anderson, J. L.; Ebel, J. P.; Lowell, M. E. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 1984, 148, 247–269.

    Article  CAS  Google Scholar 

  52. Dey, K. K.; Sen, A. Chemically propelled molecules and machines. J. Am. Chem. Soc. 2017, 139, 7666–7676.

    Article  CAS  Google Scholar 

  53. Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 2006, 128, 14881–14888.

    Article  CAS  Google Scholar 

  54. Wang, W.; Duan, W. T.; Ahmed, S.; Mallouk, T. E.; Sen, A. Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 2013, 8, 531–554.

    Article  CAS  Google Scholar 

  55. Wu, Y. J.; Si, T. Y.; Shao, J. X.; Wu, Z. G.; He, Q. Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation. Nano Res. 2016, 9, 3747–3756.

    Article  Google Scholar 

  56. Palagi, S.; Mark, A. G.; Reigh, S. Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 2016, 5, 647–653.

    Article  CAS  Google Scholar 

  57. Mou, F. Z.; Li, Y.; Chen, C. R.; Li, W.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 2015, 11, 2564–2570.

    Article  CAS  Google Scholar 

  58. Golestanian, R.; Liverpool, T. B.; Ajdari, A. Designing phoretic micro- and nano-swimmers. New J. Phys. 2007, 9, 126.

    Article  Google Scholar 

  59. Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308–3312.

    Article  CAS  Google Scholar 

  60. Duan, W. T.; Liu, R.; Sen, A. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 2013, 135, 1280–1283.

    Article  CAS  Google Scholar 

  61. Kline, T. R.; Sen, A. Reversible pattern formation through photolysis. Langmuir 2006, 22, 7124–7127.

    Article  CAS  Google Scholar 

  62. Anderson, J. L.; Lowell, M. E.; Prieve, D. C.. Motion of a particle generated by chemical gradients Part 1. Non-electrolytes. J. Fluid Mech. 1982, 117, 107–121.

    Article  CAS  Google Scholar 

  63. Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99.

    Article  Google Scholar 

  64. Palacci, J.; Sacanna, S.; Vatchinsky, A.; Chaikin, P. M.; Pine, D. J. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 2013, 135, 15978–15981.

    Article  CAS  Google Scholar 

  65. Lin, Z. H.; Si, T. Y.; Wu, Z. G.; Gao, C. Y.; Lin, X. K.; He, Q. Light-activated active colloid ribbons. Angew. Chem., Int. Ed. 2017, 56, 13517–13520.

    Article  CAS  Google Scholar 

  66. Chen, C. R.; Mou, F. Z.; Xu, L. L.; Wang, S. F.; Guan, J. G.; Feng, Z. P.; Wang, Q. W.; Kong, L.; Li, W.; Wang, J. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 2017, 29, 1603374.

    Article  CAS  Google Scholar 

  67. Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.

    Article  Google Scholar 

  68. Jiang, H. R.; Yoshinaga, N.; Sano, M. Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010, 105, 268302.

    Article  CAS  Google Scholar 

  69. Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.

    Article  CAS  Google Scholar 

  70. Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite janus nanomotors with ph-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.

    Article  CAS  Google Scholar 

  71. Liu, W.; Wang, W. J.; Dong, X. Y.; Sun, Y. Near-infrared light-powered janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis. ACS Appl. Mater. Interfaces 2020, 12, 12618–12628.

    Article  CAS  Google Scholar 

  72. Villa, K.; Pumera, M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature. Chem. Soc. Rev. 2019, 48, 4966–4978.

    Article  CAS  Google Scholar 

  73. Liu, J. Z.; Dapice, M.; Khan, S. Ion selectivity of the Vibrio alginolyticus flagellar motor. J. Bacteriol. 1990, 172, 5236–5244.

    Article  CAS  Google Scholar 

  74. Manson, M. D.; Tedesco, P.; Berg, H. C.; Harold, F. M. Van der Drift, C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA 1977, 74, 3060–3064.

    Article  CAS  Google Scholar 

  75. Jiang, H. R.; Li, C. S.; Huang, X. Z. Actuators based on liquid crystalline elastomer materials. Nanoscale 2013, 5, 5225–5240.

    Article  CAS  Google Scholar 

  76. Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D. S. Light-fueled microscopic walkers. Adv. Mater. 2011, 27, 3883–3887.

    Article  CAS  Google Scholar 

  77. Tang, X. K.; Tang, S. Y.; Sivan, V.; Zhang, W.; Mitchell, A.; Kalantar-zadeh, K.; Khoshmanesh, K. Photochemically induced motion of liquid metal marbles. Appl. Phys. Lett. 2013, 103, 174104.

    Article  CAS  Google Scholar 

  78. Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.

    Article  CAS  Google Scholar 

  79. Zhan, X. J.; Zheng, J.; Zhao, Y.; Zhu, B. R.; Cheng, R.; Wang, J. Z.; Liu, J.; Tang, J.; Tang, J. Y. From strong dichroic nanomotor to polarotactic microswimmer. Adv. Mater. 2019, 31, 1903329.

    Article  CAS  Google Scholar 

  80. Zheng, J.; Dai, B. H.; Wang, J. Z.; Xiong, Z.; Yang, Y.; Liu, J.; Zhan, X. J.; Wan, Z. H.; Tang, J. Y. Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nat. Commun. 2017, 8, 1438.

    Article  CAS  Google Scholar 

  81. Sridhar, V.; Park, B. W.; Guo, S. R.; van Aken, P. A.; Sitti, M. Multiwavelength-steerable visible-light-driven magnetic CoO−TiO2 microswimmers. ACS Appl. Mater. Interfaces 2020, 12, 24149–24155.

    Article  CAS  Google Scholar 

  82. Jang, B.; Hong, A.; Kang, H. E.; Alcantara, C.; Charreyron, S.; Mushtaq, F.; Pellicer, E.; Büchel, R.; Sort, J.; Lee, S. S. et al. Multiwavelength light-responsive Au/B-TiO2 janus micromotors. ACS Nano 2017, 11, 6146–6154.

    Article  CAS  Google Scholar 

  83. Lin, F.; Shao, Y.; Wu, Y. J.; Zhang, Y. Q. NIR light-propelled janus-based nanoplatform for cytosolic-fueled microRNA imaging. ACS Appl. Mater. Interfaces 2021, 13, 3713–3721.

    Article  CAS  Google Scholar 

  84. Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

    Article  CAS  Google Scholar 

  85. Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 7, 2002203.

    Article  CAS  Google Scholar 

  86. Wu, Z. G.; Li, L.; Yang, Y. R.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019, 4, eaax0613.

    Article  Google Scholar 

  87. Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021.

    Article  CAS  Google Scholar 

  88. Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246–251.

    Article  CAS  Google Scholar 

  89. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

    Article  CAS  Google Scholar 

  90. Wang, D. L.; Gao, C. Y.; Zhou, C.; Lin, Z. H.; He, Q. Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy. Research 2020, 2020, 3676954.

    CAS  Google Scholar 

  91. Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

    Article  CAS  Google Scholar 

  92. Jiao, X. Y.; Wang, Z. M.; Xiu, J. D.; Dai, W. H.; Zhao, L.; Xu, T. L.; Du, X.; Wen, Y. Q.; Zhang, X. J. NIR powered Janus nanocarrier for deep tumor penetration. Appl. Mater. Today 2020, 18, 100504.

    Article  Google Scholar 

  93. Gao, C. Y.; Lin, Z. H.; Wang, D. L.; Wu, Z. G.; Xie, H.; He, Q. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 23392–23400.

    Article  CAS  Google Scholar 

  94. Chen, B.; Liu, L.; Liu, K.; Tong, F.; Wang, S. H.; Fu, D. M.; Gao, J. B.; Jiang, J. M.; Ou, J. F.; Ye, Y. C. et al. Photoelectrochemical TiO2-Au-nanowire-based motor for precise modulation of single-neuron activities. Adv. Funct. Mater. 2021, 31, 2008667.

    Article  CAS  Google Scholar 

  95. Jiang, Y. W.; Li, X. J.; Liu, B.; Yi, J.; Fang, Y.; Shi, F. Y.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2018, 2, 508–521.

    Article  CAS  Google Scholar 

  96. Jiang, Y. W.; Parameswaran, R.; Li, X. J.; Carvalho-de-Souza, J. L.; Gao, X.; Meng, L. Y.; Bezanilla, F.; Shepherd, G. M. G.; Tian, B. Z. Nongenetic optical neuromodulation with silicon-based materials. Nat. Protoc. 2019, 14, 1339–1376.

    Article  CAS  Google Scholar 

  97. Parameswaran, R.; Carvalho-de-Souza, J. L.; Jiang, Y. W.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 2018, 13, 260–266.

    Article  CAS  Google Scholar 

  98. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  CAS  Google Scholar 

  99. Andrén, D.; Baranov, D. G.; Jones, S.; Volpe, G.; Verre, R.; Käll, M. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat. Nanotechnol. 2021, 16, 970–974.

    Article  CAS  Google Scholar 

  100. Dong, R. F.; Zhang, Q. L.; Gao, W.; Pei, A.; Ren, B. Y. Highly efficient light-driven TiO2-Au janus micromotors. ACS Nano 2016, 10, 839–844.

    Article  CAS  Google Scholar 

  101. Deng, Z. Y.; Mou, F. Z.; Tang, S. W.; Xu, L. L.; Luo, M.; Guan, J. G. Swarming and collective migration of micromotors under near infrared light. Appl. Mater. Today 2018, 13, 45–53.

    Article  Google Scholar 

  102. Drescher, K.; Goldstein, R. E.; Tuval, I. Fidelity of adaptive phototaxis. Proc. Natl. Acad. Sci. USA 2010, 107, 11171–11176.

    Article  CAS  Google Scholar 

  103. Jékely, G.; Colombelli, J.; Hausen, H.; Guy, K.; Stelzer, E.; Nédélec, F.; Arendt, D. Mechanism of phototaxis in marine zooplankton. Nature 2008, 456, 395–399.

    Article  CAS  Google Scholar 

  104. O’Neel-Judy, É.; Nicholls, D.; Castañeda, J.; Gibbs, J. G. Light-activated, multi-semiconductor hybrid microswimmers. Small 2018, 14, 1801860.

    Article  CAS  Google Scholar 

  105. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  CAS  Google Scholar 

  106. Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C:Photochem. Rev. 2003, 4, 145–153.

    Article  CAS  Google Scholar 

  107. de Ávila, B. E. F.; Martin, A.; Soto, F.; Lopez-Ramirez, M. A.; Campuzano, S.; Vasquez-Machado, G. M.; Gao, W. W.; Zhang, L. F.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 2015, 9, 6756–6764.

    Article  CAS  Google Scholar 

  108. Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.

    Article  Google Scholar 

  109. Deng, G. J.; Peng, X. H.; Sun, Z. H.; Zheng, W.; Yu, J.; Du, L. L.; Chen, H. J.; Gong, P.; Zhang, P. F.; Cai, L. T. et al. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 2020, 14, 11452–11462.

    Article  CAS  Google Scholar 

  110. Yuan, Y.; Gao, C. Y.; Wang, D. L.; Zhou, C.; Zhu, B. H.; He, Q. Janus-micromotor-based on-off luminescence sensor for active TNT detection. Beilstein J. Nanotechnol. 2019, 10, 1324–1331.

    Article  CAS  Google Scholar 

  111. Aziz, A.; Medina-Sánchez, M.; Koukourakis, N.; Wang, J. W.; Kuschmierz, R.; Radner, H.; Czarske, J. W.; Schmidt, O. G. Real-time IR tracking of single reflective micromotors through scattering tissues. Adv. Funct. Mater. 2019, 29, 1905272.

    Article  CAS  Google Scholar 

  112. Xie, L. S.; Pang, X.; Yan, X. H.; Dai, Q. X.; Lin, H. R.; Ye, J.; Cheng, Y.; Zhao, Q. L.; Ma, X.; Zhang, X. Z. et al. Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 2020, 14, 2880–2893.

    Article  CAS  Google Scholar 

  113. Aziz, A.; Medina-Sánchez, M.; Claussen, J.; Schmidt, O. G. Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues. Nano Lett. 2019, 19, 6612–6620.

    Article  CAS  Google Scholar 

  114. Wei, T. Y.; Liu, J.; Li, D. F.; Chen, S. X.; Zhang, Y. C.; Li, J. Y.; Fan, L.; Guan, Z. Y.; Lo, C. M.; Wang, L. D. et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 2020, 16, 1906908.

    Article  CAS  Google Scholar 

  115. Xu, P.; Yu, Y. Q.; Li, T.; Chen, H.; Wang, Q.; Wang, M.; Wan, M. M.; Mao, C. Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Anal. Chim. Acta 2020, 1129, 60–68.

    Article  CAS  Google Scholar 

  116. Wan, M. M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y. Q.; Zhu, T. Y.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 966.

    Article  CAS  Google Scholar 

  117. Rao, J. H.; Dragulescu-Andrasi, A.; Yao, H. Q. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007, 18, 17–25.

    Article  CAS  Google Scholar 

  118. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

    Article  CAS  Google Scholar 

  119. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

    Article  CAS  Google Scholar 

  120. Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

    Article  CAS  Google Scholar 

  121. Nie, L. M.; Chen, X. Y. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 2014, 43, 7132–7170.

    Article  CAS  Google Scholar 

  122. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  123. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  CAS  Google Scholar 

  124. Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293.

    Article  CAS  Google Scholar 

  125. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA:Cancer J. Clin. 2011, 61, 250–281.

    Google Scholar 

  126. Felsher, D. W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer 2003, 3, 375–380.

    Article  CAS  Google Scholar 

  127. Robertson, C. A.; Evans, D. H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B:Biol. 2009, 96, 1–8.

    Article  CAS  Google Scholar 

  128. Yang, L. D.; Zhang, Y. B.; Wang, Q. Q.; Chan, K. F.; Zhang, L. Automated control of magnetic spore-based microrobot using fluorescence imaging for targeted delivery with cellular resolution. IEEE Trans. Autom. Sci. Eng. 2020, 17, 490–501.

    Article  Google Scholar 

  129. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.

    Article  CAS  Google Scholar 

  130. Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

    Article  CAS  Google Scholar 

  131. Klostranec, J. M.; Chan, W. C. W. Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 2006, 18, 1953–1964.

    Article  CAS  Google Scholar 

  132. DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371.

    Article  Google Scholar 

  133. You, Y. Q.; Xu, D. D.; Pan, X.; Ma, X. Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Appl. Mater. Today 2019, 16, 508–517.

    Article  Google Scholar 

  134. van Straten, D.; Mashayekhi, V.; de Bruijn, H. S.; Oliveira, S.; Robinson, D. J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017, 9, 19.

    Article  CAS  Google Scholar 

  135. Ban, Q. F.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci. 2017, 5, 190–210.

    Article  CAS  Google Scholar 

  136. Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

    Article  CAS  Google Scholar 

  137. Wang, H.; Zhou, S. Q. Magnetic and fluorescent carbon-based nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater. Sci. 2016, 4, 1062–1073.

    Article  CAS  Google Scholar 

  138. Liu, Q.; Sun, C. Y.; He, Q.; Liu, D. B.; Khalil, A.; Xiang, T.; Wu, Z. Y.; Wang, J.; Song, L. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. 2015, 51, 10054–10057.

    Article  CAS  Google Scholar 

  139. Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88, 1391–1417.

    Article  CAS  Google Scholar 

  140. Qin, Z. J.; Zheng, Y. K.; Du, T. Y.; Wang, Y. H.; Gao, H. M.; Quan, J. F.; Zhang, Y.; Du, Y.; Yin, L. H.; Wang, X. M. et al. Cysteamine: A key to trigger aggregation-induced NIR-II photothermal effect and silver release booming of gold-silver nanocages for synergetic treatment of multidrug-resistant bacteria infection. Chem. Eng. J. 2021, 414, 128779.

    Article  CAS  Google Scholar 

  141. Gao, Y.; Wang, S. Q.; Yang, C. Y.; An, N.; Liu, Z.; Yan, M.; Guo, C. S. A near-infrared responsive germanium complex of Ge/GeO2 for targeted tumor phototherapy. J. Mater. Chem. B 2019, 7, 5056–5064.

    Article  CAS  Google Scholar 

  142. Choi, H.; Lee, G. H.; Kim, K. S.; Hahn, S. K. Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 2338–2346.

    Article  CAS  Google Scholar 

  143. Yang, P. P.; Zhai, Y. G.; Qi, G. B.; Lin, Y. X.; Luo, Q.; Yang, Y.; Xu, A. P.; Yang, C.; Li, Y. S.; Wang, L. et al. NIR light propulsive janus-like nanohybrids for enhanced photothermal tumor therapy. Small 2016, 12, 5423–5430.

    Article  CAS  Google Scholar 

  144. Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: Similarities and differences. Adv. Mater. 2020, 32, 1904717.

    Article  CAS  Google Scholar 

  145. Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

    Article  CAS  Google Scholar 

  146. Beladi-Mousavi, S. M.; Klein, J.; Khezri, B.; Walder, L.; Pumera, M. Active anion delivery by self-propelled microswimmers. ACS Nano 2020, 14, 3434–3441.

    Article  CAS  Google Scholar 

  147. Urso, M.; Ussia, M.; Pumera, M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021, 31, 2101510.

    Article  CAS  Google Scholar 

  148. Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  CAS  Google Scholar 

  149. Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

    Article  CAS  Google Scholar 

  150. Boyjoo, Y.; Sun, H. Q.; Liu, J.; Pareek, V. K.; Wang, S. B. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559.

    Article  CAS  Google Scholar 

  151. Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’ Shea, K. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B:Environ. 2012, 125, 331–349.

    Article  CAS  Google Scholar 

  152. de Ávila, B. E. F.; Angsantikul, P.; Ramírez-Herrera, D. E.; Soto, F.; Teymourian, H.; Dehaini, D.; Chen, Y. J.; Zhang, L. F.; Wang, J. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 2018, 3, eaat0485.

    Article  Google Scholar 

  153. Ying, Y. L.; Pumera, M. Micro/Nanomotors for Water Purification. Chem.—Eur. J. 2019, 25, 106–121.

    Article  CAS  Google Scholar 

  154. Kong, L.; Guan, J. G.; Pumera, M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 2018, 10, 174–182.

    Article  CAS  Google Scholar 

  155. Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Article  CAS  Google Scholar 

  156. Wang, S.; Jiang, Z. Z.; Ouyang, S. S.; Dai, Z. P.; Wang, T. Internally/externally bubble-propelled photocatalytic tubular nanomotors for efficient water cleaning. ACS Appl. Mater. Interfaces 2017, 9, 23974–23982.

    Article  CAS  Google Scholar 

  157. Hou, T.; Yu, S. S.; Zhou, M. F.; Wu, M.; Liu, J.; Zheng, X. L.; Li, J. X.; Wang, J.; Wang, X. L. Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale 2020, 12, 5227–5232.

    Article  CAS  Google Scholar 

  158. Song, L. B.; Li, C. Q.; Chen, W.; Liu, B.; Zhao, Y. D. Highly efficient MnO2/reduced graphene oxide hydrogel motors for organic pollutants removal. J. Mater. Sci. 2020, 55, 1984–1995.

    Article  CAS  Google Scholar 

  159. Zhang, J. H.; Mou, F. Z.; Wu, Z.; Tang, S. W.; Xie, H. R.; You, M.; Liang, X.; Xu, L. L.; Guan, J. G. Simple-structured micromotors based on inherent asymmetry in crystalline phases: Design, large-scale preparation, and environmental application. ACS Appl. Mater. Interfaces 2019, 11, 16639–16646.

    Article  CAS  Google Scholar 

  160. Cui, X. L.; Li, J.; Ng, D. H. L.; Liu, J.; Liu, Y.; Yang, W. N. 3D hierarchical ACFs-based micromotors as efficient photo-Fenton-like catalysts. Carbon 2020, 158, 738–748.

    Article  CAS  Google Scholar 

  161. Zhan, Z. H.; Wei, F. N.; Zheng, J. H.; Yin, C.; Yang, W. G.; Yao, L. G.; Tang, S. S.; Liu, D. Visible light driven recyclable micromotors for “on-the-fly” water remediation. Mater. Lett. 2020, 258, 126825.

    Article  CAS  Google Scholar 

  162. Mallick, A.; Roy, S. Visible light driven catalytic gold decorated soft-oxometalate (SOM) based nanomotors for organic pollutant remediation. Nanoscale 2018, 10, 12713–12722.

    Article  CAS  Google Scholar 

  163. Kutorglo, E. M.; Elashnikov, R.; Rimpelova, S.; Ulbrich, P.; Ambrožová, J. Ř.; Svorcik, V.; Lyutakov, O. Polypyrrole-based nanorobots powered by light and glucose for pollutant degradation in water. ACS Appl. Mater. Interfaces 2021, 13, 16173–16181.

    Article  CAS  Google Scholar 

  164. Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.

    Article  CAS  Google Scholar 

  165. Kong, L.; Mayorga-Martinez, C. C.; Guan, J. G.; Pumera, M. Fuel-free light-powered TiO2/Pt janus micromotors for enhanced nitroaromatic explosives degradation. ACS Appl. Mater. Interfaces 2018, 10, 22427–22434.

    Article  CAS  Google Scholar 

  166. Pourrahimi, A. M.; Villa, K.; Ying, Y. L.; Sofer, Z.; Pumera, M. ZnO/ZnO2/Pt janus micromotors propulsion mode changes with size and interface structure: Enhanced nitroaromatic explosives degradation under visible light. ACS Appl. Mater. Interfaces 2018, 10, 42688–42697.

    Article  CAS  Google Scholar 

  167. Ying, Y. L.; Pourrahimi, A. M.; Manzanares-Palenzuela, C. L.; Novotny, F.; Sofer, Z.; Pumera, M. Light-driven ZnO brush-shaped self-propelled micromachines for nitroaromatic explosives decomposition. Small 2020, 16, 1902944.

    Article  CAS  Google Scholar 

  168. Kong, L.; Ambrosi, A.; Nasir, M. Z. M.; Guan, J. G.; Pumera, M. Self-propelled 3D-printed “aircraft carrier” of light-powered smart micromachines for large-volume nitroaromatic explosives removal. Adv. Funct. Mater. 2019, 29, 1903872.

    Article  CAS  Google Scholar 

  169. Ussia, M.; Urso, M.; Dolezelikova, K.; Michalkova, H.; Adam, V.; Pumera, M. Active light — powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021, 31, 2101178.

    Article  CAS  Google Scholar 

  170. Simmchen, J.; Baeza, A.; Miguel-Lopez, A.; Stanton, M. M.; Vallet-Regi, M.; Ruiz-Molina, D.; Sánchez, S. Dynamics of novel photoactive AgCl microstars and their environmental applications. ChemNanoMat 2017, 3, 65–71.

    Article  CAS  Google Scholar 

  171. Xu, D. D.; Hu, J.; Pan, X.; Sánchez, S.; Yan, X. H.; Ma, X. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 2021, 15, 11543–11554.

    Article  CAS  Google Scholar 

  172. Urso, M.; Ussia, M.; Pumera, M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021, 31, 2101510.

    Article  CAS  Google Scholar 

  173. Beladi-Mousavi, S. M.; Hermanova, S.; Ying, Y. L.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110.

    Article  CAS  Google Scholar 

  174. Wang, L. L.; Kaeppler, A.; Fischer, D.; Simmchen, J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces 2019, 11, 32937–32944.

    Article  CAS  Google Scholar 

  175. Ye, H.; Wang, Y.; Liu, X. J.; Xu, D. D.; Yuan, H.; Sun, H. Q.; Wang, S. B.; Ma, X. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 2021, 588, 510–521.

    Article  CAS  Google Scholar 

  176. Butterworth, K. T.; McMahon, S. J.; Currell, F. J.; Prise, K. M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 2012, 4, 4830–4838.

    Article  CAS  Google Scholar 

  177. Wang, Y. X.; Feng, L. H.; Wang, S. Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv. Funct. Mater. 2019, 29, 1806818.

    Article  CAS  Google Scholar 

  178. McAlindon, T. E.; Bannuru, R. R.; Sullivan, M. C.; Arden, N. K.; Berenbaum, F.; Bierma-Zeinstra, S. M.; Hawker, G. A.; Henrotin, Y.; Hunter, D. J.; Kawaguchi, H. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388.

    Article  CAS  Google Scholar 

  179. Rossini, P. M.; Burke, D.; Chen, R.; Cohen, L. G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P. B.; George, M. S. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I. F. C. N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107.

    Article  CAS  Google Scholar 

  180. Packer, A. M.; Roska, B.; Häusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 2013, 16, 805–815.

    Article  CAS  Google Scholar 

  181. Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.

    Article  CAS  Google Scholar 

  182. Chen, X. Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu, C. Z.; Nelson, B. J.; Pané, S. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 2017, 9, 37–46.

    Article  Google Scholar 

  183. Peyer, K. E.; Zhang, L.; Nelson, B. J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259–1272.

    Article  CAS  Google Scholar 

  184. Karshalev, E.; de Ávila, B. E. F.; Wang, J. Micromotors for “chemistry-on-the-fly”. J. Am. Chem. Soc. 2018, 140, 3810–3820.

    Article  CAS  Google Scholar 

  185. Kadiri, V. M.; Günther, J. P.; Kottapalli, S. N.; Goyal, R.; Peter, F.; Alarcón-Correa, M.; Son, K.; Barad, H. N.; Börsch, M.; Fischer, P. Light- and magnetically actuated FePt microswimmers. Eur. Phys. J. E 2021, 44, 74.

    Article  CAS  Google Scholar 

  186. Zhou, D. K.; Ren, L. Q.; Li, Y. C.; Xu, P. T.; Gao, Y.; Zhang, G. Y.; Wang, W.; Mallouk, T. E.; Li, L. Q. Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem. Commun. 2017, 53, 11465–11468.

    Article  CAS  Google Scholar 

  187. Beladi-Mousavi, S. M.; Hermanova, S.; Ying, Y. L.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110.

    Article  CAS  Google Scholar 

  188. Xu, L. L.; Ma, C.; Guan, B.; Lin, J. W.; Xiong, K.; Mou, F. Z.; Luo, M.; Guan, J. G. NIR light-steered magnetic liquid marbles with switchable positive/negative phototaxis. Appl. Mater. Today 2020, 19, 100595.

    Article  Google Scholar 

  189. Yuan, K. S.; de la Asunción-Nadal, V.; Jurado-Sánchez, B.; Escarpa, A. 2D nanomaterials wrapped janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion. Chem. Mater. 2020, 32, 1983–1992.

    Article  CAS  Google Scholar 

  190. Wang, C.; Dong, R. F.; Wang, Q. L.; Zhang, C.; She, X. L.; Wang, J. J.; Cai, Y. P. One modification, two functions: Single ni-modified light-driven ZnO microrockets with both efficient propulsion and steerable motion. Chem.—Asian J. 2019, 14, 2485–2490.

    Article  CAS  Google Scholar 

  191. Wang, Q. L.; Wang, C.; Dong, R. F.; Pang, Q. Q.; Cai, Y. P. Steerable light-driven TiO2−Fe Janus micromotor. Inorg. Chem. Commun. 2018, 91, 1–4.

    Article  CAS  Google Scholar 

  192. Mou, F. Z.; Kong, L.; Chen, C. R.; Chen, Z. H.; Xu, L. L.; Guan, J. G. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale 2016, 8, 4976–4983.

    Article  CAS  Google Scholar 

  193. Li, Y.; Mou, F. Z.; Chen, C. R.; You, M.; Yin, Y. X.; Xu, L. L.; Guan, J. G. Light-controlled bubble propulsion of amorphous TiO2/Au Janus micromotors. RSC Adv. 2016, 6, 10697–10703.

    Article  CAS  Google Scholar 

  194. Zhou, D. K.; Li, Y. C.; Xu, P. T.; Ren, L. Q.; Zhang, G. Y.; Mallouk, T. E.; Li, L. Q. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 2017, 9, 11434–11438.

    Article  CAS  Google Scholar 

  195. Dong, R. F.; Hu, Y.; Wu, Y. F.; Gao, W. Y.; Ren, B. Y.; Wang, Q. L.; Cai, Y. P. Visible-light-driven BiOI-based janus micromotor in pure water. J. Am. Chem. Soc. 2017, 139, 1722–1725.

    Article  CAS  Google Scholar 

  196. Sridhar, V.; Podjaski, F.; Kröger, J.; Jiménez-Solano, A.; Park, B. W.; Lotsch, B. V.; Sitti, M. Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proc. Natl. Acad. Sci. USA 2020, 117, 24748–24756.

    Article  CAS  Google Scholar 

  197. Zheng, J.; Wang, J. Z.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. Y.; Chen, J. W.; Dai, J.; Tang, J. Y. Full spectrum tunable visible-light-driven alloy nanomotor. Adv. Funct. Mater. 2019, 29, 1901768.

    Article  CAS  Google Scholar 

  198. Du, S. N.; Wang, H. G.; Zhou, C.; Wang, W.; Zhang, Z. X. Motor and rotor in one: Light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 2020, 142, 2213–2217.

    Article  CAS  Google Scholar 

  199. Sridhar, V.; Park, B. W.; Sitti, M. Light-driven janus hollow mesoporous TiO2-au microswimmers. Adv. Funct. Mater. 2018, 28, 1704902.

    Article  CAS  Google Scholar 

  200. Xiao, Z. Y.; Chen, J. Y.; Duan, S. F.; Lv, X. L.; Wang, J. Z.; Ma, X.; Tang, J. Y.; Wang, W. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem. Commun. 2020, 56, 4728–4731.

    Article  CAS  Google Scholar 

  201. Wu, Y. F.; Dong, R. F.; Zhang, Q. L.; Ren, B. Y. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2−Au janus micromotors. Nano-Micro Lett. 2017, 9, 30.

    Article  CAS  Google Scholar 

  202. Liu, W. Y.; Zhang, J. L.; Liu, H.; Guo, X. N.; Zhang, X. Y.; Yao, X. L.; Cao, Z. G.; Zhang, T. T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277.

    Article  CAS  Google Scholar 

  203. Padervand, M.; Lichtfouse, E.; Robert, D.; Wang, C. Y. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 2020, 18, 807–828.

    Article  CAS  Google Scholar 

  204. Ji, F. T.; Wang, B.; Zhang, L. Light-triggered catalytic performance enhancement using magnetic nanomotor ensembles. Research 2020, 2020, 6380794.

    CAS  Google Scholar 

  205. Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.

    Article  CAS  Google Scholar 

  206. Wu, Y. J.; Lin, X. K.; Wu, Z. G.; Möhwald, H.; He, Q. Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces 2014, 6, 10476–10481.

    Article  CAS  Google Scholar 

  207. Karaca, G. Y.; Kuralay, F.; Uygun, E.; Ozaltin, K.; Demirbuken, S. E.; Garipcan, B.; Oksuz, L.; Oksuz, A. U. Gold-nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery. ACS Appl. Nano Mater. 2021, 4, 3377–3388.

    Article  CAS  Google Scholar 

  208. Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 2018, 12, 9617–9625.

    Article  CAS  Google Scholar 

  209. Mhanna, R.; Qiu, F. M.; Zhang, L.; Ding, Y.; Sugihara, K.; Zenobi-Wong, M.; Nelson, B. J. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 2014, 10, 1953–1957.

    Article  CAS  Google Scholar 

  210. Servant, A.; Qiu, F. M.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981–2988.

    Article  CAS  Google Scholar 

  211. Li, J. Y.; Li, X. J.; Luo, T.; Wang, R.; Liu, C. C.; Chen, S. X.; Li, D. F.; Yue, J. B.; Cheng, S. H.; Sun, D. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3, eaat8829.

    Article  Google Scholar 

  212. Jeon, S.; Kim, S.; Ha, S.; Lee, S.; Kim, E.; Kim, S. Y.; Park, S. H.; Jeon, J. H.; Kim, S. W.; Moon, C. et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 2019, 4, eaav4317.

    Article  Google Scholar 

  213. Liang, C. Y.; Zhan, C.; Zeng, F. Y.; Xu, D. D.; Wang, Y.; Zhao, W. W.; Zhang, J. H.; Guo, J. H.; Feng, H. H.; Ma, X. Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 2018, 10, 35099–35107.

    Article  CAS  Google Scholar 

  214. Hughes, M. P. Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics 2016, 10, 032801.

    Article  CAS  Google Scholar 

  215. Fan, D. L.; Cammarata, R. C.; Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett. 2008, 92, 093115.

    Article  CAS  Google Scholar 

  216. Gagnon, Z. R. Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 2011, 32, 2466–2487.

    Article  CAS  Google Scholar 

  217. Kim, K.; Xu, X. B.; Guo, J. H.; Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 2014, 5, 3632.

    Article  CAS  Google Scholar 

  218. Jones, T. B. Electromechanics of Particles; Cambridge University Press: UK, 2005.

    Google Scholar 

  219. Qin, Y. L.; Wu, L.; Schneider, T.; Yen, G. S.; Wang, J. S.; Xu, S. H.; Li, M.; Paguirigan, A. L.; Smith, J. L.; Radich, J. P. et al. A self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture, on-demand compartmentalization, and downstream nucleic acid analysis. Angew. Chem., Int. Ed. 2018, 57, 11378–11383.

    Article  CAS  Google Scholar 

  220. Lin, W. Y.; Lin, Y. H.; Lee, G. B. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 2010, 8, 217–229.

    Article  CAS  Google Scholar 

  221. Liang, Z. X.; Fan, D. L. Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 2018, 4, eaau0981.

    Article  CAS  Google Scholar 

  222. Liang, Z. X.; Teal, D.; Fan, D. L. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 2019, 10, 5275.

    Article  CAS  Google Scholar 

  223. Cao, F.; Yu, D. J.; Gu, Y.; Chen, J.; Zeng, H. B. Novel optoelectronic rotors based on orthorhombic CsPb(Br/I)3 nanorods. Nanoscale 2019, 11, 3117–3122.

    Article  CAS  Google Scholar 

  224. Dai, J.; Cheng, X.; Li, X. F.; Wang, Z. S.; Wang, Y. F.; Zheng, J.; Liu, J.; Chen, J. W.; Wu, C. J.; Tang, J. Y. Solution-synthesized multifunctional janus nanotree microswimmer. Adv. Funct. Mater. 2021, 31, 2106204.

    Article  CAS  Google Scholar 

  225. Zhang, S. L.; Scott, E. Y.; Singh, J.; Chen, Y. J.; Zhang, Y. F.; Elsayed, M.; Chamberlain, M. D.; Shakiba, N.; Adams, K.; Yu, S. Y. et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proc. Natl. Acad. Sci. USA 2019, 116, 14823–14828.

    Article  CAS  Google Scholar 

  226. Zhang, S. L.; Elsayed, M.; Peng, R.; Chen, Y. J.; Zhang, Y. F.; Peng, J. X.; Li, W. Z.; Chamberlain, M. D.; Nikitina, A.; Yu, S. Y. et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun. 2021, 12, 5349.

    Article  CAS  Google Scholar 

  227. Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

    Article  CAS  Google Scholar 

  228. Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 2009, 5, 1688–1692.

    Article  CAS  Google Scholar 

  229. Li, J. X.; Singh, V. V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R. F.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014, 8, 11118–11125.

    Article  CAS  Google Scholar 

  230. Chen, C. R.; Tang, S. S.; Teymourian, H.; Karshalev, E.; Zhang, F. Y.; Li, J. X.; Mou, F. Z.; Liang, Y. Y.; Guan, J. G.; Wang, J. Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem., Int. Ed. 2018, 57, 8110–8114.

    Article  CAS  Google Scholar 

  231. Lv, H. Z.; Xing, Y.; Du, X.; Xu, T. L.; Zhang, X. J. Construction of dendritic Janus nanomotors with H2O2 and NIR light dual-propulsion via a Pickering emulsion. Soft Matter 2020, 16, 4961–4968.

    Article  CAS  Google Scholar 

  232. Zhou, C.; Chen, X.; Han, Z. Y.; Wang, W. Photochemically excited, pulsating janus colloidal motors of tunable dynamics. ACS Nano 2019, 13, 4064–4072.

    Article  CAS  Google Scholar 

  233. Ibele, M. E.; Lammert, P. E.; Crespi, V. H.; Sen, A. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 2010, 4, 4845–4851.

    Article  CAS  Google Scholar 

  234. Zhou, C.; Wang, Q. Z.; Lv, X. L.; Wang, W. Non-oscillatory micromotors “learn” to oscillate on-the-fly from oscillating Ag micromotors. Chem. Commun. 2020, 56, 6499–6502.

    Article  CAS  Google Scholar 

  235. Zhou, C.; Suematsu, N. J.; Peng, Y. X.; Wang, Q. Z.; Chen, X.; Gao, Y. X.; Wang, W. Coordinating an ensemble of chemical micromotors via spontaneous synchronization. ACS Nano 2020, 14, 5360–5370.

    Article  CAS  Google Scholar 

  236. Altemose, A.; Sánchez-Farrán, M. A.; Duan, W. T.; Schulz, S.; Borhan, A.; Crespi, V. H.; Sen, A. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem., Int. Ed. 2017, 56, 7817–7821.

    Article  CAS  Google Scholar 

  237. Wang, W.; Li, S. X.; Mair, L.; Ahmed, S.; Huang, T. J.; Mallouk, T. E. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem., Int. Ed. 2014, 53, 3201–3204.

    Article  CAS  Google Scholar 

  238. Ahmed, S.; Wang, W.; Bai, L. J.; Gentekos, D. T.; Hoyos, M.; Mallouk, T. E. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 2016, 10, 4763–4769.

    Article  CAS  Google Scholar 

  239. Zhou, D. K.; Gao, Y.; Yang, J. J.; Li, Y. C.; Shao, G. B.; Zhang, G. Y.; Li, T. L.; Li, L. Q. Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 2018, 5, 1800122.

    Article  CAS  Google Scholar 

  240. Tang, S. S.; Zhang, F. Y.; Zhao, J.; Talaat, W.; Soto, F.; Karshalev, E.; Chen, C. R.; Hu, Z. H.; Lu, X. L.; Li, J. X. et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls. Adv. Funct. Mater. 2019, 29, 1809003.

    Article  CAS  Google Scholar 

  241. Xu, T. L.; Luo, Y.; Liu, C. H.; Zhang, X. J.; Wang, S. T. Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal. Chem. 2020, 92, 7816–7821.

    Article  CAS  Google Scholar 

  242. Das, S.; Garg, A.; Campbell, A. I.; Howse, J.; Sen, A.; Velegol, D.; Golestanian, R.; Ebbens, S. J. Boundaries can steer active Janus spheres. Nat. Commun. 2015, 6, 8999.

    Article  CAS  Google Scholar 

  243. Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M. Self-propulsion of a catalytically active particle near a planar wall: From reflection to sliding and hovering. Soft Matter 2015, 11, 434–438.

    Article  CAS  Google Scholar 

  244. Liu, C.; Zhou, C.; Wang, W.; Zhang, H. P. Bimetallic microswimmers speed up in confining channels. Phys. Rev. Lett. 2016, 117, 198001.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22005119, 21731002, and 21975104), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110404), Guangzhou Basic and Applied Basic Research Foundation (No. 202102020444), Guangdong Major Project of Basic and Applied Research (No. 2019B030302009), the Hong Kong Research Grants Council (RGC) General Research Fund (Nos. GRF17305917, GRF17303015, and GRF17304618), the Seed Funding for Interdisciplinary Research (University of Hong Kong), the Science Technology and Innovation Program of Shenzhen (No. JCYJ20170818141618963), and the Shenzhen-Hong Kong Innovation Circle Program (No. SGDX2019081623341332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhuang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xiong, Z., Wang, J. et al. Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Res. 15, 5355–5375 (2022). https://doi.org/10.1007/s12274-022-4119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4119-7

Keywords

Navigation