Skip to main content
Log in

Quantum essence of particle superfluidity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Life systems show an ultralow energy consumption in their high-efficiency bio-activities, implying a high-flux transport of ions and molecules with an ultralow resistivity. A collective motion (CM) of these particles is necessary for this kind of behaviors, different from the traditional Newtonian diffusion. The CM is an ordered particle state, resulting from the balance between attraction and repulsion of the particles, in which the attraction is a necessary condition. The ultralow resistivity of electronic or atomic fluid at low temperature is already described phenomenologically by introducing the interparticle attraction. Here, we try to establish a phenomenological expression for the quantum state of ion or molecule CM at ambient temperature, by also considering the attraction of particles. These studies suggest that the Bose-Einstein condensate potentially exists widely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ocké, M. C.; Larrañaga, N.; Grioni, S.; Van Den Berg, S. W.; Ferrari, P.; Salvini, S.; Benetou, V.; Linseisen, J.; Wirfält, E.; Rinaldi, S. et al. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63, S3–S15.

  2. Raichle, M. E.; Gusnard, D. A. Appraising the brain’ s energy budget. Proc. Natl. Acad. Sci. USA 2002, 99, 10237–10239.

    Article  CAS  Google Scholar 

  3. Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

    Article  CAS  Google Scholar 

  4. Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

    Article  CAS  Google Scholar 

  5. Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    Article  CAS  Google Scholar 

  6. Hao, Y. W.; Pang, S.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid reactions. Chem. Sci. 2020, 11, 10035–10046.

    Article  CAS  Google Scholar 

  7. Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

    Article  CAS  Google Scholar 

  8. De Groot, B. L.; Grubmüller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001, 294, 2353–2357.

    Article  CAS  Google Scholar 

  9. Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.

    Article  Google Scholar 

  10. Zhang, F.; Song, B.; Jiang, L. The quantized chemical reaction resonantly driven by multiple MIR-photons: From nature to the artificial. Nano Res. 2021, 14, 4367–4369.

    Article  CAS  Google Scholar 

  11. Borysova, L.; Ng, Y. Y. H.; Wragg, E. S.; Wallis, L. E.; Fay, E.; Ascione, R.; Dora, K. A. High spatial and temporal resolution Ca2+ imaging of myocardial strips from human, pig and rat. Nat. Protoc. 2021, 16, 4650–4675.

    Article  CAS  Google Scholar 

  12. Xu, J.; Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 2008, 3, 666–670.

    Article  CAS  Google Scholar 

  13. Catania, K. C. Power transfer to a human during an electric eel’s shocking leap. Curr. Biol. 2017, 27, 2887–2891.e2.

    Article  CAS  Google Scholar 

  14. Song, B.; Jiang, L. The macroscopic quantum state of ion channels: A carrier of neural information. Sci. China Mater. 2021, 64, 2572–2579.

    Article  CAS  Google Scholar 

  15. Leggett, A. J. Quantum Liquids; Oxford University Press: New York, 2006.

    Book  Google Scholar 

  16. Zhang, X. Q.; Song, B.; Jiang, L. Driving force of molecular/ionic superfluid formation. CCS Chem. 2021, 3, 1258–1266.

    Article  CAS  Google Scholar 

  17. Landau, L. D.; Lifshitz, E. M. Statistical Physics, 3rd ed.; Pergamon Press: Oxford, 1980.

    Google Scholar 

  18. Onnes, H. K. Further experiments with liquid helium. D. On the change of the electrical resistance of pure metals at very low Temperatures, etc. V. The disappearance of the resistance of mercury. In Through Measurement to Knowledge; Gavroglu, K.; Goudaroulis, Y., Eds.; Springer: Dordrecht, 1911; pp 264–266.

    Google Scholar 

  19. Meissner, W.; Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften 1933, 21, 787–788.

    Article  Google Scholar 

  20. Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175–1204.

    Article  CAS  Google Scholar 

  21. Ginzburgand, V.; Landau, L. On the theory of superconductivity. Sov. Phys. JETP 1950, 20, 1064–1082.

    Google Scholar 

  22. Ginzburg, V. L. On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the 21st century. ChemPhysChem 2004, 5, 930–945.

    Article  CAS  Google Scholar 

  23. Bogolubov, N. N.; Bogolubov, N. N. Jr. Introduction to Quantum Statistical Mechanics, 2nd ed.; World Scientific: Singapore, 2010.

    Google Scholar 

  24. Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 1938, 141, 74.

    Article  CAS  Google Scholar 

  25. Allen, J. F.; Misener, A. D. Flow of liquid helium II. Nature 1938, 141, 75.

    Article  CAS  Google Scholar 

  26. Gasparini, F. M.; Kimball, M. O.; Mooney, K. P.; Diaz-Avila, M. Finite-size scaling of 4He at the superfluid transition. Rev. Mod. Phys. 2008, 80, 1009–1059.

    Article  CAS  Google Scholar 

  27. Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.

    Article  Google Scholar 

  28. Yan, Z. J.; Wang, D. D.; Ye, Z. J.; Fan, T.; Wu, G.; Deng, L. Y.; Yang, L.; Li, B. X.; Liu, J. W.; Ma, T. et al. Artificial aquaporin that restores wound healing of impaired cells. J. Am. Chem. Soc. 2020, 142, 15638–15643.

    Article  CAS  Google Scholar 

  29. The Science/AAAS Custom Publishing Office. 125 questions: Exploration and discovery [Online]. https://www.science.org/content/resource/125-questions-exploration-and-discovery (accessed May 14, 2021).

Download references

Acknowledgements

We thank Profs. Qikun Xue, Qi Ouyang, Yi Luo, Junpeng Cao, Yongcong Chen and Markus Antonientt very much for the helpful discussions, especially thank Prof. Qikun Xue very much for his inspiring question about the relation of collective ion motion at body temperature with the atom superfluidity and electron superconductivity. This work was supported by the National Key Research and Development Program of China (No. 2018YFE0205501) and the National Natural Science Foundation of China Project (No. 21988102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Song or Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Jiang, L. Quantum essence of particle superfluidity. Nano Res. 15, 5230–5234 (2022). https://doi.org/10.1007/s12274-022-4121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4121-0

Keywords

Navigation