Skip to main content
Log in

Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) van der Waals (vdW) magnetic materials with strong in-plane anisotropy can make possible novel applications such as optospintronics and strain sensors. In this work, the strong in-plane optical anisotropy in 2D vdW antiferromagnet VOCl has been systematically investigated. The optical brightness and absorption coefficient exhibit evident periodic variation with the change of incident polarization, unveiling the strong in-plane anisotropic optical absorption. The Raman intensity in this material shows obvious dependence on the polarization angle of incident laser, demonstrating that the phonon properties possess strong in-plane anisotropy. Besides, we have also realized in-situ visualization of in-plane optical reflection anisotropy in this material. Moreover, the strong second harmonic generation (SHG) signal can only be detected when the incident polarization is along specific in-plane crystal orientations, illustrating the presence of strong in-plane nonlinear optical anisotropy. These findings will benefit the applications of VOCl in the field of polarization-dependent electronics and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

    Article  CAS  Google Scholar 

  2. Yang, S. X.; Hu, C. G.; Wu, M. H.; Shen, W. F.; Tongay, S.; Wu, K. D.; Wei, B.; Sun, Z. Y.; Jiang, C. B.; Huang, L. et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano 2018, 12, 8798–8807.

    Article  CAS  Google Scholar 

  3. Liu, S.; Chen, Y. J.; Yang, S. X.; Jiang, C. B. SnSe field-effect transistors with improved electrical properties. Nano Res. 2022, 15, 1532–1537.

    Article  CAS  Google Scholar 

  4. Li, H.; Sanchez-Santolino, G.; Puebla, S.; Frisenda, R.; Al-Enizi, A. M.; Nafady, A.; D’Agosta, R.; Castellanos-Gomez, A. Strongly anisotropic strain-tunability of excitons in exfoliated ZrSe3. Adv. Mater. 2022, 34, 2103571.

    Article  CAS  Google Scholar 

  5. Hou, S. J.; Guo, Z. F.; Xiong, T.; Wang, X. G.; Yang, J. H.; Liu, Y. Y.; Niu, Z. C.; Liu, S. Y.; Liu, B.; Zhai, S. Q. et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Res. 2022, 15, 8579–8586.

    Article  CAS  Google Scholar 

  6. Lin, H.; Zhang, Z. F.; Zhang, H. H.; Lin, K. T.; Wen, X. M.; Liang, Y.; Fu, Y.; Lau, A. K. T.; Ma, T. Y.; Qiu, C. W. et al. Engineering van der Waals materials for advanced metaphotonics. Chem. Rev. 2022, 122, 15204–15355.

    Article  CAS  Google Scholar 

  7. Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

    Article  CAS  Google Scholar 

  8. Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

    Article  CAS  Google Scholar 

  9. Nair, A. K.; Rani, S.; Kamalakar, M. V.; Ray, S. J. Bi-stimuli assisted engineering and control of magnetic phase in monolayer CrOCl. Phys. Chem. Chem. Phys. 2020, 22, 12806–12813.

    Article  CAS  Google Scholar 

  10. Yang, S. X.; Zhang, T. L.; Jiang, C. B. Van der Waals magnets: Material family, detection and modulation of magnetism, and perspective in spintronics. Adv. Sci. 2021, 8, 2002488.

    Article  CAS  Google Scholar 

  11. Kanamaru, F.; Yamanaka, S.; Koizumi, M.; Nagai, S. Synthesis and some properties of a layer-type inorganic-organic complex of FeOCl and pyridine. Chem. Lett. 1974, 3, 373–376.

    Article  Google Scholar 

  12. Krimmel, A.; Strempfer, J.; Bohnenbuck, B.; Keimer, B.; Hoinkis, M.; Klemm, M.; Horn, S.; Loidl, A.; Sing, M.; Claessen, R. et al. Incommensurate structure of the spin-Peierls compound TiOCl in zero and finite magnetic fields. Phys. Rev. B 2006, 73, 172413.

    Article  Google Scholar 

  13. Komarek, A. C.; Taetz, T.; Fernández-Díaz, M. T.; Trots, D. M.; Möller, A.; Braden, M. Strong magnetoelastic coupling in VOCl: Neutron and synchrotron powder X-ray diffraction study. Phys. Rev. B 2009, 79, 104425.

    Article  Google Scholar 

  14. Zhang, J.; Wölfel, A.; Li, L.; Van Smaalen, S.; Williamson, H. L.; Kremer, R. K. Magnetoelastic coupling in the incommensurate antiferromagnetic phase of FeOCl. Phys. Rev. B 2012, 86, 134428.

    Article  Google Scholar 

  15. Angelkort, J.; Wölfel, A.; Schönleber, A.; Van Smaalen, S.; Kremer, R. K. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys. Rev. B 2009, 80, 144416.

    Article  Google Scholar 

  16. Miao, N. H.; Xu, B.; Zhu, L. G.; Zhou, J.; Sun, Z. M. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420.

    Article  CAS  Google Scholar 

  17. Zhang, T. L.; Wang, Y. M.; Li, H. X.; Zhong, F.; Shi, J.; Wu, M. H.; Sun, Z. Y.; Shen, W. F.; Wei, B.; Hu, W. D. et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl. ACS Nano. 2019, 13, 11353–11362.

    Article  CAS  Google Scholar 

  18. Zheng, X. M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J. X.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through van der Waals interlayer coupling. Adv. Funct. Mater. 2022, 32, 2202658.

    Article  CAS  Google Scholar 

  19. Zeng, Y.; Gu, P. F.; Zhao, Z. J.; Zhang, B.; Lin, Z. C.; Peng, Y. X.; Li, W.; Zhao, W. T.; Leng, Y. C.; Tan, P. H. et al. 2D FeOCl: A highly in-plane anisotropic antiferromagnetic semiconductor synthesized via temperature-oscillation chemical vapor transport. Adv. Mater. 2022, 34, 2108847.

    Article  CAS  Google Scholar 

  20. Wang, W. J.; Xu, X. T.; Shen, J.; Wang, Z.; Zhang, S. L.; Qu, Z. Spin-phonon coupling in van der Waals antiferromagnet VOCl. Chin. Phys. B 2021, 30, 107502.

    Article  CAS  Google Scholar 

  21. Wang, W. J.; Sun, R.; He, S. J.; Jia, Z. Y.; Su, C. L.; Li, Y.; Wang, Z. C. Atomic structure, work function and magnetism in layered single crystal VOCl. 2D Mater. 2021, 8, 015027.

    Article  CAS  Google Scholar 

  22. Villalpando, G.; Ferrenti, A. M.; Singha, R.; Song, X. Y.; Cheng, G. M.; Yao, N.; Schoop, L. M. Chemical exfoliation toward magnetic 2D VOCl monolayers. ACS Nano 2022, 16, 13814–13820.

    Article  CAS  Google Scholar 

  23. Wang, R. J.; Cui, Q. L.; Zhu, W.; Niu, Y. J.; Liu, Z. F.; Zhang, L.; Wu, X. J.; Chen, S. M.; Song, L. In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction. Chin. Phys. B 2022, 31, 096802.

    Article  Google Scholar 

  24. Zhu, W.; Cui, Q.; Adam, M. L.; Liu, Z.; Zhang, L.; Dai, Z.; Yin, Y.; Chen, S.; Song, L. Ternary VOCl single-crystal as efficient gate dielectric for 2D field-effect transistors. 2D Mater. 2021, 8, 025010.

    Article  CAS  Google Scholar 

  25. Sun, Y. M.; Xiong, J. X.; Wu, X. M.; Gao, W.; Huo, N. J.; Li, J. B. Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2. Nano Res. 2022, 15, 5384–5391.

    Article  CAS  Google Scholar 

  26. Higuchi, T.; Kuwata-Gonokami, M. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing. Nat. Commun. 2016, 7, 10720.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  28. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  30. Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

    Article  CAS  Google Scholar 

  31. Liu, X. L.; Zhang, X.; Lin, M. L.; Tan, P. H. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin. Phys. B 2017, 26, 067802.

    Article  Google Scholar 

  32. Beams, R.; Cançado, L. G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Singh, A. K.; Choudhary, K.; Bruma, A.; Vora, P. M.; Tavazza, F. et al. Characterization of few-layer 1T’ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 2016, 10, 9626–9636.

    Article  CAS  Google Scholar 

  33. Shen, W. F.; Hu, C. G.; Tao, J.; Liu, J.; Fan, S. Q.; Wei, Y. X.; An, C. H.; Chen, J. C.; Wu, S.; Li, Y. N. et al. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale 2018, 10, 8329–8337.

    Article  CAS  Google Scholar 

  34. Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

    Article  Google Scholar 

  35. Zhou, J. D.; Shi, J.; Zeng, Q. S.; Chen, Y.; Niu, L.; Liu, F. C.; Yu, T.; Suenaga, K.; Liu, X. F.; Lin, J. H. et al. InSe monolayer: Synthesis, structure and ultra-high second-harmonic generation. 2D Mater. 2018, 5, 025019.

    Article  Google Scholar 

  36. Capretti, A.; Walsh, G. F.; Minissale, S.; Trevino, J.; Forestiere, C.; Miano, G.; Dal Negro, L. Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt. Express 2012, 20, 15797–15806.

    Article  CAS  Google Scholar 

  37. Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevet, P. F. Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 2008, 25, 955–960.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. X. Y. is supported by the National Natural Science Foundation of China (NSFC) (No. 51972007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengxue Yang or Chengbao Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Du, J., Wang, W. et al. Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl. Nano Res. 16, 7481–7488 (2023). https://doi.org/10.1007/s12274-022-5358-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5358-0

Keywords

Navigation