Skip to main content
Log in

In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulelah, H.A. and Zainal-Abidin, B.A.H. 2007. In vivo antimalarial test of Nigeila sativa (black seed). Am. J. Pharmacol. Toxicol. 2, 46–50.

    Article  Google Scholar 

  • Adamczeski, M., Reed, A.R., and Crews, P. 1995. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Anthony, P.J., Fyfe, L., and Smith, H. 2005. Plant active components- a source for anti-parasitic agents. Trend Parasitol. 21, 462–468.

    Article  CAS  Google Scholar 

  • Ata-ur-Rehman, S., Malik, H., Cun, H., and Clardy, J. 1985. Isolation and structure determination of nigellicine, a novel alkaloid from seeds of Nigella sativa. Tetrahedron Lett. 26, 2759–2762.

    Article  Google Scholar 

  • Behal, V. 2000. Bioactive products from Streptomyces. Adv. Appl. Microbiol. 47, 113–157.

    Article  CAS  PubMed  Google Scholar 

  • Belin, P., Moutiez, M., Lautru, S., Seguin, J., Pernodet, J.L., and Gondry, M. 2012. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 29, 961–979.

    Article  CAS  PubMed  Google Scholar 

  • Ben Ameur Mehdi, R., Mellouli, L., Chabchoub, F., Fotso, S., and Bejar, S. 2004. Purification and structure elucidation of two biologically active molecules from a new isolated Streptomyces sp. US24 strain. Chem. Nat. Comp. 40, 510–513.

    Article  Google Scholar 

  • Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Bibb, M.J. 2005. Regulation of secondary metabolism in Streptomycetes. Curr. Opin. Microbiol. 8, 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Bin, Y., Junde, D., Xuefeng, Z., Xianwen, Y., Kyung, J.L., Lishu, W., Si, Z., and Yonghong, L. 2009. Proline-containing dipeptides from a marine sponge of a Callyspongia species. Helv. Chim. Acta. 92, 1112–1117.

    Article  Google Scholar 

  • Bray, P.G., Ward, S.A., and O’Neill, P.M. 2005. Quinolines and artemisinin: chemistry, biology and history. Curr. Top. Microbiol. Immunol. 295, 3–38.

    CAS  PubMed  Google Scholar 

  • Castillo, U.F., Strobel, G.A., Ford, E.J., Hess, W.M., Porter, H., Jensen, J.B., Albert, H., Robison, R., Condron, M.A.M., Teplow, D.B., et al. 2002. Munumbicins, wide spectrum antibiotics produced by Streptomyces (NRRL 30562) endophytic on Kennedia nigriscans. Microbiology 148, 2675–2685.

    Article  CAS  PubMed  Google Scholar 

  • Coombs, J.T. and Franco, M.M. 2003. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekasari, W., Widyawaruyanti, A., Zaini, N.C., Syafruddin, D., Honda, T., and Morita, H. 2009. Antimalarial activity of Cassiarin from the leaves of Cassia siamea. Heterocycles 78, 1831–1836.

    Article  CAS  Google Scholar 

  • Ernest, E.M.C. 1995. Advantages and limits of in-vivo screening test. Ann. Occup. Hygiene 39, 727–735.

    Article  Google Scholar 

  • Espinel, M.A., Laszlo, A., Simonsen, L., Boulahbal, F., Kim, S.J., Reniero, A., Hoffner, S., Rieder, H.L., Binkin, N., Dye, C., et al. 2001. Global trends in resistance to antituberculosis drugs. N. Engl. J. Med. 344, 1294–1303.

    Article  Google Scholar 

  • Fernandez, L.S., Buchanan, M.S., Carroll, A.R., Feng, Y.J., Quinn, R.J., and Avery, V.M. 2009. Flinderoles A-C: Antimalarial bisindole alkaloids from Flindersia species. Org. Lett. 11, 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, H.P., Bruntner, C., Bull, A.T., Ward, A.C., Goodfellow, M., Potterat, O., Puder, C., and Mihm, G. 2005. Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Flärdh, K. and Buttner, M.J. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49.

    Article  PubMed  Google Scholar 

  • Foley, M. and Tilley, L. 1998. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 79, 55–87.

    Article  CAS  PubMed  Google Scholar 

  • Ghadin, N., Zin, N.M., Sabaratnam, V., Badya, N., Basri, D.F., Lian, H.H., and Sidik, N.M. 2008. Isolation and characterization of a novel endophytic Streptomyces SUK 06 with antimicrobial activity from Malaysian plants. Asian J. Plant Sci. 7, 189–194.

    Article  Google Scholar 

  • Ibrahim, J., Mat Ali, R., and Goh, S.H. 1994. Toxic and antifungal properties of the essential oils of Cinnamomum species from Peninsular Malaysia. J. Trop. Forest Sci. 6, 286–292.

    Google Scholar 

  • Isaka, M., Jaturapat, A., Kramyu, J., Tanticharoen, M., and Thebtaranonth, Y. 2002. Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC4785. Antimicrob. Agents Chemother. 46, 1112–1113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain, T.C., Dingerdissen, J.J., and Weisbach, J.A. 1977. Isolation and structure elucidation of Gancidin W. Heterocycles 7, 341–346.

    Article  CAS  Google Scholar 

  • Jochen, W., Dajana, H., David, B.H., Ewald, B., and Hassan-Jomaa, A. 2002. In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother. 46, 2889–2894.

    Article  Google Scholar 

  • Joy, D., Feng, X., and Mu, J. 2003. Early origin and recent expansion of Plasmodium falciparum. Science300 5617, 318–321.

    Article  Google Scholar 

  • Keiser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces Genetics (2nd ed.). John Innes Foundation. Norwich, England.

    Google Scholar 

  • Kurosawa, Y., Dorn, A., Kitsuji-Shirane, M., Shimada, H., Satoh, T., Matile, H., Hofheinz, W., Masciadri, R., Kansy, M., and Ridley, R.G. 2000. Hematin polimerization assay as a high-throughput screen for identification of new antimalarial pharmacophores. Antimicrob. Agents Chemother. 44, 2638–2644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipsitch, M., Tchetgen, E., and Cohen, T. 2010. Negative controls: A tools of detecting confounding and bias in observational studies. Epidemiology 21, 383–388.

    Article  PubMed Central  PubMed  Google Scholar 

  • Magyar, A., Zhang, X., Abdi, F., Kohn, H., and Widger, W. 1999. Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant Rho proteins. J. Biol. Chem. 274, 7316–7324.

    Article  CAS  PubMed  Google Scholar 

  • Peters, W. and Robinson, B.L. 1992. The chemotherapy of rodent malaria XLVII: studies on pyronaridine and other mannich base antimalarials. Ann. Trop. Med. Parasitol. 86, 455–465.

    CAS  PubMed  Google Scholar 

  • Pillay, D. and Zambon, M. 1998. Antiviral drug resistance. British Med. J. 317, 660–662.

    Article  CAS  Google Scholar 

  • Prudhomme, J., McDaniel, E., Ponts, N., Bertani, S., Fenical, W., Jensen, P., and Karine, L.R. 2008. Marine Actinomycete: A new source of compounds against the human malarial parasite. PLoS One 3, e2335.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajendra, P.M., Elisabeth, H., Oliver, K., Heinz, H.F., Armin, M., Andreas, B., and Hartmut, L. 2004. Anti-cancer and antibacterial trioxacarcins with high anti-malarial activity from a marine Streptomycete and their absolute stereochemistry. J. Antibiot. 57, 771–779.

    Article  Google Scholar 

  • Rhee, K.H. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J. Gen. Appl. Microbiol. 48, 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Smaoui, S., Mathieu, F., Elleuch, L., Coppel, Y., Merlina, G., Karray- Rebai, I., and Mellouli, I. 2012. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J. Microbiol. Biotechnol. 28, 793–804.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products microbial. Microbiol. Mol. Biol. Rev. 67, 491–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D. 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623.

    Article  CAS  PubMed  Google Scholar 

  • Wangchuk, P., Bremner, J., Samten, B., Rattanajak, R., and Kamchonwongpaisan, S. 2010. Antiplasmodial agents from the Bhutanese medicinal plant Corydalis calliantha. Phytother. Res. 24, 481–485.

    Article  CAS  PubMed  Google Scholar 

  • Wellems, T.E. 2002. Plasmodium chloroquine resistance and the search for a replacement antimalarial drug. Science298 5591, 124–126.

    Article  Google Scholar 

  • Yotoko, K.S.C. and Elisei, C. 2006. Malaria parasites (Apicomplexa, Haematozoea) and their relationships with their hosts: is there an evolutionary cost for the specialization. J. Zool. System. Evol. Res. 44, 265–270.

    Article  Google Scholar 

  • Zainal-Abidin, B.A.H., Noorakmal, Z., and Othman, O. 1985. Ph. D. Thesis. National University of Malaysia, UKM Bangi Selangor, Malaysia.

    Google Scholar 

  • Zin, N.M., Loi, C.S., Sarmin, N.M., and Rosli, A.N. 2010. Cultivation- dependent characterization of endophytic actinomycetes. Res. J. Microbiol. 5, 717–724.

    Article  Google Scholar 

  • Zin, N.M., Ng, K.T., Sarmin, N.I., Getha, K., and Tan, G.Y. 2011. Anti-trypanosoma activity of endophytic Streptomycete. Curr. Res. Bacteriol. 4, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noraziah Mohamad Zin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, M.S., Zin, N.M., Hassan, Z.A.A. et al. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol. 53, 847–855 (2015). https://doi.org/10.1007/s12275-015-5076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5076-6

Keywords

Navigation