Skip to main content
Log in

The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Adaptation to changing environmental conditions is crucial for the survival of microorganisms. Bacteria have evolved various mechanisms to cope with osmotic stress. Here, we report the identification and functional characterization of the osmotic stress response operon, betIBA, in Acinetobacter nosocomialis. The betIBA operon encodes enzymes that are important for the conversion of choline to the osmoprotectant, glycine betaine. The betIBA operon is polycistronic and is under the regulation of the first gene, betI, of the same operon. A bioinformatics analysis revealed the presence of a BetI-binding motif upstream of the betIBA operon, and electrophoretic mobility shift assays confirmed the specific binding of BetI. An mRNA expression analysis revealed that expression of betI, betB, and betA genes is elevated in a betI-eletion mutant compared with the wild type, confirming that the autorepressor BetI represses the betIBA operon in A. nosocomialis. We further found that the betIBA operon is under the transcriptional control of the quorum-sensing (QS) regulator, AnoR in, A. nosocomialis. A subsequent analysis of the impact of BetI on expression of the QS genes, anoR and anoI, demonstrated that BetI acts as a repressor of anoR and anoI. In addition, it was noticed that the osmotic stress response regulator, OmpR might play an important role in controlling the expression of betIBA operon in A. nosocomialis. Collectively, these data demonstrate that QS and osmotic stress-response systems are correlated in A. nosocomialis and that the expression of genes in both systems is finely tuned by various feedback loops depending on osmolarity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bremer, E. and Krämer, R. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. In Storz, G. and Hengge-Aronis, R. (eds.), Bacterial Stress Responses, pp. 79–97. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Cánovas, D., Vargas, C., Kneip, S., Morón, M.J., Ventosa, A., Bremer, E., and Nieto, J.N.J. 2000. Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. Microbiology 146, 455–463.

    Article  Google Scholar 

  • da Costa, M.S., Santos, H., and Galinski, E.A. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61, 117–153.

    CAS  PubMed  Google Scholar 

  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  Google Scholar 

  • Galinski, E.A. 1993. Compatible solutes of halophilic eubacteria - molecular principles, water-solute interaction, stress protection. Experientia 49, 487–496.

    Article  CAS  Google Scholar 

  • Galinski, E.A. and Trüper, H.G. 1994. Microbial behaviour in saltstressed ecosystems. FEMS Microbiol. Rev. 15, 95–108.

    Article  CAS  Google Scholar 

  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580.

    Article  CAS  Google Scholar 

  • Harwood, J.L. 1980. Plant acyl lipids: structure, distribution and analysis. In Stumpf, P.K. and Conn, E.E. (eds.), The biochemistry of plants: A comprehensive treatise, pp. 1–55. Academic Press, New York, USA.

    Google Scholar 

  • Imhoff, J.F. 1986. Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol. Rev. 2, 57–66.

    Article  Google Scholar 

  • Juni, E. 1978. Genetics and physiology of Acinetobacter. Annu. Rev. Microbiol. 32, 349–371.

    Article  CAS  Google Scholar 

  • Kempf, B. and Bremer, E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330.

    Article  CAS  Google Scholar 

  • Lamark, T., Kaasen, I., Eshoo, M.W., Falkenberg, P., McDougall, J., and Strom, A.R. 1991. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol. Microbiol. 5, 1049–1064.

    Article  CAS  Google Scholar 

  • Lamark, T., Røkenes, T.P., McDougall, J., and Strom, A.R. 1996. The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J. Bacteriol. 178, 1655–1662.

    Article  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  CAS  Google Scholar 

  • Niu, C., Clemmer, K.M., Bonomo, R.A., and Rather, P.N. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190, 3386–3392.

    Article  CAS  Google Scholar 

  • Norioka, S., Ramakrishnan, G., Ikenaka, K., and Inouye, M. 1986. Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli. J. Biol. Chem. 261, 17113–17119.

    CAS  PubMed  Google Scholar 

  • Oh, M.H. and Choi, C.H. 2015. Role of LuxIR homologue AnoIR in Acinetobacter nosocomialis and the effect of virstatin on the expression of anoR gene. J. Microbiol. Biotechnol. 25, 1390–1400.

    Article  CAS  Google Scholar 

  • Oh, M.H., Lee, J.C., Kim, J., Choi, C.H., and Han, K. 2015. Simple method for markerless gene deletion in multidrug-resistant Acinetobacter baumannii. Appl. Environ. Microbiol. 81, 3357–3368.

    Article  CAS  Google Scholar 

  • Oren, A. 2013. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315.

    Article  Google Scholar 

  • Pflüger, K. and Müller, V. 2004. Transport of compatible solutes in extremophiles. J. Bioenerg. Biomembr. 36, 17–24.

    Article  Google Scholar 

  • Ramos, J.L., Martínez-Bueno, M., Molina-Henares, A.J., Terán, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., and Tobes, R. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356.

    Article  CAS  Google Scholar 

  • Roberts, M.F. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1, 5.

    Article  Google Scholar 

  • Røkenes, T.P., Lamark, T., and Strøm, A.R. 1996. DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J. Bacteriol. 178, 1663–1670.

    Article  Google Scholar 

  • Ruffert, S., Lambert, C., Peter, H., Wendisch, V.F., and Krämer, R. 1997. Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur. J. Biochem. 247, 572–580.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989 Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Sand, M., Stahl, J., Waclawska, I., Ziegler, C., and Averhoff, B. 2014. Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation. Environ. Microbiol. 16, 1490–1502.

    Article  CAS  Google Scholar 

  • Scholz, A., Stahl, J., de Berardinis, V., Müller, V., and Averhoff, B. 2016. Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine-betaine synthesis through a choline-responsive BetI repressor. Environ. Microbiol. Rep. 8, 316–322.

    Article  CAS  Google Scholar 

  • Shimada, T., Takada, H., Yamamoto, K., and Ishihama, A. 2015. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells 20, 915–931.

    Article  CAS  Google Scholar 

  • Simon, R., Priefer, U., and Pühler, A. 1983. A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. 1, 784–791.

    Article  CAS  Google Scholar 

  • Smith, L.T., Pocard, J.A., Bernard, T., and Le Rudulier, D.} 1988. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol. 170, 3142–3149.

    Article  CAS  Google Scholar 

  • Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  Google Scholar 

  • van Kessel, J.C., Rutherford, S.T., Cong, J.P., Quinodoz, S., Healy, J., and Bassler, B.L. 2015. Quorum sensing regulates the osmotic stress response in Vibrio harveyi. J. Bacteriol. 197, 73–80.

    Article  Google Scholar 

  • van Kessel, J.C., Rutherford, S.T., Shao, Y., Utria, A.F., and Bassler, B.L. 2013. Individual and combined roles of the master regulators AphA and LuxR in control of the Vibrio harveyi quorum-sensing regulon. J. Bacteriol. 195, 436–443.

    Article  Google Scholar 

  • Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.

    Article  CAS  Google Scholar 

  • Wargo, M.J., Szwergold, B.S., and Hogan, D.A. 2008. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J. Bacteriol. 190, 2690–2699.

    Article  CAS  Google Scholar 

  • Wood, J.M., Bremer, E., Csonka, L.N., Kraemer, R., Poolman, B., van der Heide, T., and Smith, L.T. 2001. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130, 437–460.

    Article  CAS  Google Scholar 

  • Ziegler, C., Bremer, E., and Krämer, R. 2010. The BCCT family of carriers: from physiology to crystal structure. Mol. Microbiol. 78, 13–34.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1F1A1043436, NRF-2019M3E5-D1A02068575, NRF-2017R1A5A2015385, NRF-2014R1-A6A1029617) and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI17C1657).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Hwan Oh or Chul Hee Choi.

Additional information

Conflict of Interest

The authors confirm that there are no conflicts of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

12275_2020_186_MOESM1_ESM.pdf

The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhadra, B., Surendran, S., Lim, B.R. et al. The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. J Microbiol. 58, 519–529 (2020). https://doi.org/10.1007/s12275-020-0186-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0186-1

Keywords

Navigation