Skip to main content
Log in

Comparative genomics analysis of Pediococcus acidilactici species

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pediococcus acidilactici is a reliable bacteriocin producer and a promising probiotic species with wide application in the food and health industry. However, the underlying genetic features of this species have not been analyzed. In this study, we performed a comprehensive comparative genomic analysis of 41 P. acidilactici strains from various ecological niches. The bacteriocin production of 41 strains were predicted and three kinds of bacteriocin encoding genes were identified in 11 P. acidilactici strains, namely pediocin PA-1, enterolysin A, and colicin-B. Moreover, whole-genome analysis showed a high genetic diversity within the population, mainly related to a large proportion of variable genomes, mobile elements, and hypothetical genes obtained through horizontal gene transfer. In addition, comparative genomics also facilitated the genetic explanation of the adaptation for host environment, which specify the protection mechanism against the invasion of foreign DNA (i.e. CRISPR/Cas locus), as well as carbohydrate fermentation. The 41 strains of P. acidilactici can metabolize a variety of carbon sources, which enhances the adaptability of this species and survival in different environments. This study evaluated the antibacterial ability, genome evolution, and ecological flexibility of P. acidilactici from the perspective of genetics and provides strong supporting evidence for its industrial development and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Taraboush, H., Al-Dagal, M., and Al-Royli, M. 1998. Growth, viability, and proteolytic activity of Bifidobacteria in whole camel milk. J. Dairy Sci. 81, 354–361.

    Article  CAS  PubMed  Google Scholar 

  • Altermann, E. 2012. Tracing lifestyle adaptation in prokaryotic genomes. Front. Microbiol. 3, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I., and Koidis, P. 2008. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresour. Technol. 99, 5384–5390.

    Article  CAS  PubMed  Google Scholar 

  • Arber, W. 1991. Elements in microbial evolution. J. Mol. Evol. 33, 4–12.

    Article  CAS  PubMed  Google Scholar 

  • Arboleya, S., Bottacini, F., O’Connell-Motherway, M., Ryan, C.A., Ross, R.P., Van Sinderen, D., and Stanton, C. 2018. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 19, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Bazinet, A.L. 2017. Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol. Biol. 17, 176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas, S., Ray, P., Johnson, M., and Ray, B. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57, 1265–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, G.R. and Moran, N.A. 2011. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 3, 195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, A., Zaheer, R., Adator, E.H., Barbieri, R., Reuter, T., and McAllister, T.A. 2019. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins 11, 475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238.

    Article  CAS  PubMed  Google Scholar 

  • Carver, T.J., Rutherford, K.M., Berriman, M., Rajandream, M.A., Barrell, B.G., and Parkhill, J. 2005. ACT: the Artemis comparison tool. Bioinformatics 21, 3422–3423.

    Article  CAS  PubMed  Google Scholar 

  • Chikindas, M.L., García-Garcerá, M.J., Driessen, A., Ledeboer, A.M., Nissen-Meyer, J., Nes, I.F., Abee, T., Konings, W.N., and Venema, G. 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1. 0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59, 3577–3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cintas, L., Casaus, P., Fernández, M., and Hernández, P. 1998. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15, 289–298.

    Article  CAS  Google Scholar 

  • Cintas, L.M., Rodriguez, J.M., Fernandez, M.F., Sletten, K., Nes, I.F., Hernandez, P.E., and Holo, H. 1995. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus aci-dilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61, 2643–2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Moreira, B. and Vinuesa, P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E.P., Vergnaud, G., Gautheret, D., and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabour, N., Zihler, A., Kheadr, E., Lacroix, C., and Fliss, I. 2009. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Drissi, F., Merhej, V., Angelakis, E., El Kaoutari, A., Carrière, F., Henrissat, B., and Raoult, D. 2014. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr. Diabetes 4, e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsinghorst, E.A. and Mortlock, R.P. 1988. D-Arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the l-fucose-d-arabinose pathway enzymes. J. Bacteriol. 170, 5423–5432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsinghorst, E.A. and Mortlock, R.P. 1994. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster. J. Bacteriol. 176, 7223–7232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Wang, L., Zhou, L., Yang, X., and Zhao, X. 2016. Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE 11, e0147630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J. and Qin, Q. 2012. Analysis of pan-genomic characteristics of 30 strains of E. coli. Genetic 34, 765–772.

    CAS  Google Scholar 

  • Fuller, R. 1992. Probiotics: The scientific basis. Chapman & Hall, London, United Kingdom.

    Book  Google Scholar 

  • Goldin, B.R. and Gorbach, S.L. 1992. Probiotics for humans. In Fuller, R. (ed.) Probiotics. Springer, Dordrecht, Germany.

    Google Scholar 

  • Henderson, J.T., Chopko, A.L., and Van Wassenaar, P.D. 1992. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295, 5–12.

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Back, W., and Dicks, L.M.T. 2006. The genera Pediococcus and Tetragenococcus. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, pp. 229–266. Springer, New York, USA.

    Chapter  Google Scholar 

  • Horvath, P. and Barrangou, R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Horvath, P., Coûté-Monvoisin, A.C., Romero, D.A., Boyaval, P., Fremaux, C., and Barrangou, R. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Yang, B., Ross, R.P., Stanton, C., and Chen, W. 2020. Comparative genomics of Pediococcus pentosaceus isolated from different niches reveals genetic diversity in carbohydrate metabolism and immune system. Front. Microbiol. 11, 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp, P.D., Latendresse, M., Paley, S.M., Krummenacker, M., Ong, Q.D., Billington, R., Kothari, A., Weaver, D., Lee, T., Subhraveti, P., et al. 2016. Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, W.J., Cookson, A.L., Altermann, E., Lambie, S.C., Perry, R., Teh, K.H., Otter, D.E., Shapiro, N., Woyke, T., and Leahy, S.C. 2016. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract. Sci. Rep. 6, 30768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolde, R. and Kolde, M.R. 2015. Package ‘pheatmap’. R package 1, 790.

    Google Scholar 

  • Komora, N., Maciel, C., Pinto, C.A., Ferreira, V., Brandào, T.R., Saraiva, J.M., Castro, S.M., and Teixeira, P. 2020. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol. 86, 103315.

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, D.J. and Mortlock, R.P. 1971. Metabolism of d-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 106, 90–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic, I. and Bork, P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Harrison, P.M., Kunin, V., and Gerstein, M. 2004. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 5, R64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano, J.C.N., Meyer, J.N., Sletten, K., Peláz, C., and Nes, I.F. 1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. Microbiology 138, 1985–1990.

    Google Scholar 

  • Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H., et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marri, P.R., Hao, W., and Golding, G.B. 2006. Gene gain and gene loss in Streptococcus: is it driven by habitat? Mol. Biol. Evol. 23, 2379–2391.

    Article  CAS  PubMed  Google Scholar 

  • Mäyra-Mäkinen, A. and Bigret, M. 2004. Industrial use and production of lactic acid bacteria. In Salminen, S. and von Wright, A. (eds.), Lactic acid bacteria, Chapter 5. CRC Press, New York, USA.

    Google Scholar 

  • Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Lozano, J.C., Reguera-Useros, J.I., Peláez-Martínez, M.D.C., Sacristán-Pérez-Minayo, G., Gutiérrez-Fernández, A.J., and de la Torre, A.H. 2010. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21, 679–685.

    Article  CAS  Google Scholar 

  • Nissen-Meyer, J. and Nes, I.F. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, M.M., Forde, B.M., Neville, B., Ross, P.R., and O’Toole, P.W. 2011. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Fact. 10, S12.

    Article  PubMed  Google Scholar 

  • Olszewska, M. and Staniewski, B. 2012. Cell viability of Bifidobacterium lactis strain in long-term storage butter assessed with the plate count and fluorescence techniques. Czech J. Food Sci. 30, 421–428.

    Article  Google Scholar 

  • Parada, J.L., Caron, C.R., Medeiros, A.B.P., and Soccol, C.R. 2007. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol. 50, 512–542.

    Article  Google Scholar 

  • Porto, M.C.W., Kuniyoshi, T.M., Azevedo, P.O.S., Vitolo, M., and Oliveira, R.P.S. 2017. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol. Adv. 35, 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Rohman, A., Dijkstra, B.W., and Puspaningsih, N.N.T. 2019. β-Xylosidases: structural diversity, catalytic mechanism, and inhibition by monosaccharides. Int. J. Mol. Sci. 20, 5524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semjonovs, P. and Zikmanis, P. 2008. Evaluation of novel lactose-positive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods. Eur. Food Res. Technol. 227, 851–856.

    Article  CAS  Google Scholar 

  • Shah, A.A., Yuan, X., Khan, R.U., and Shao, T. 2018. Effect of lactic acid bacteria-treated King grass silage on the performance traits and serum metabolites in New Zealand white rabbits (Oryctolagus cuniculus). J. Anim. Physiol. Anim. Nutr. 102, e902–e908.

    Article  CAS  Google Scholar 

  • Stiles, M.E. and Holzapfel, W.H. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tarailo-Graovac, M. and Chen, N. 2004. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.110.14.

    Google Scholar 

  • Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin, H., Riley, D., Cattuto, C., and Medini, D. 2008. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, T., Tategaki, A., Hamada, K., Kishida, H., Nakagawa, K., Hosoe, K., Morikawa, H., and Nakagawa, K. 2018. Effects of Pediococcus acidilactici R037 on serum triglyceride levels in mice and rats after oral administration. J. Nutr. Sci. Vitaminol. 64, 41–47.

    Article  CAS  PubMed  Google Scholar 

  • van Heel, A.J., de Jong, A., Song, C., Viel, J.H., Kok, J., and Kuipers, O.P.J.N.a.r. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waack, S., Keller, O., Asper, R., Brodag, T., Damm, C., Fricke, W.F., Surovcik, K., Meinicke, P., and Merkl, R. 2006. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Shi, P., Huang, H., Luo, H., Wang, Y., Zhang, W., and Yao, B. 2014. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem. 148, 381–387.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Guangdong Provincial Key Laboratory of core colletion of corp genetic resources research and application (NO.2011A091000047). This work was supported by the projects subsidized by special funds for science technology innovation and industrial development of Shenzhen Dapeng New District (Grand No. KJYF-202001-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shancen Zhao.

Ethics declarations

We have no conflicts of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Song, Q., Wang, M. et al. Comparative genomics analysis of Pediococcus acidilactici species. J Microbiol. 59, 573–583 (2021). https://doi.org/10.1007/s12275-021-0618-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0618-6

Keywords

Navigation