Skip to main content
Log in

Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)-SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a whole-cell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archelas, A. and Furstoss, R. 1997. Synthesis of enantiopure epoxides through biocatalytic approaches. Annu. Rev. Microbiol. 51, 491–525.

    Article  CAS  Google Scholar 

  • Archelas, A. and Furstoss, R. 2001. Synthetic applications of epoxide hydrolases. Curr. Opin. Chem. Biol. 5, 112–119.

    Article  CAS  Google Scholar 

  • Besse, P. and Veschambre, H. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron 50, 8885–8927.

    Article  CAS  Google Scholar 

  • Chen, C.S., Fujimoto, Y., Girdaukas, G., and Sih, C.J. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299.

    Article  CAS  Google Scholar 

  • Flieger, J., Feder-Kubis, J., and Tatarczak-Michalewska, M. 2020. Chiral ionic liquids: structural diversity, properties and applications in selected separation techniques. Int. J. Mol. Sci. 21, 4253.

    Article  CAS  Google Scholar 

  • Grogan, G., Roberts, S.M., and Willetts, A.J. 1996. Novel aliphatic epoxide hydrolase activities from dematiaceous fungi. FEMS Microbiol. Lett. 141, 239–243.

    Article  CAS  Google Scholar 

  • Hwang, Y.O., Kang, S.G., Woo, J.H., Kwon, K.K., Sato, T., Lee, E.Y., Han, M.S., and Kim, S.J. 2008. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. Mar. Biotechnol. 10, 366–373.

    Article  CAS  Google Scholar 

  • Jia, X., Wang, Z., and Li, Z. 2008. Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 19, 407–415.

    Article  CAS  Google Scholar 

  • Kim, H.S., Cha, S.H., Suk, H.Y., Park, N.H., and Woo, J.H. 2018. Complete genome sequence of Sphingorhabdus sp. YGSMI21, exhibiting high enantioselective epoxide hydrolase activity. Genome Announc. 6, e01441–17.

    PubMed  PubMed Central  Google Scholar 

  • Lee, E.Y. 2008. Epoxide hydrolase-mediated enantioconvergent bioconversions to prepare chiral epoxides and alcohols. Biotechnol. Lett. 30, 1509–1514.

    Article  CAS  Google Scholar 

  • Lee, E.Y. and Shuler, M.L. 2007. Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis. Biotechnol. Bioeng. 98, 318–327.

    Article  CAS  Google Scholar 

  • Straathof, A.J.J. and Jongejan, J.A. 1997. The enantiomeric ratio: origin, determination and prediction. Enzyme Microb. Technol. 21, 559–571.

    Article  CAS  Google Scholar 

  • Tokunaga, M., Larrow, J.F., Kakiuchi, F., and Jacobsen, E.N. 1997. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277, 936–938.

    Article  CAS  Google Scholar 

  • Weijers, C.A.G.M. and de Bont, J.A.M. 1999. Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J. Mol. Catal. B Enzym. 6, 199–214.

    Article  CAS  Google Scholar 

  • Woo, J.H., Hwang, Y.O., Kang, S.G., Lee, H.S., Cho, J.C., and Kim, S.J. 2007. Cloning and characterization of three novel epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl. Microbiol. Biotechnol. 76, 365–375.

    Article  CAS  Google Scholar 

  • Woo, J.H., Hwang, Y.O., Kang, J.H., Lee, H.S., Kim, S.J., and Kang, S.G. 2010a. Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans. J. Biosci. Bioeng. 110, 295–297.

    Article  CAS  Google Scholar 

  • Woo, J.H., Kang, J.H., Hwang, Y.O., Cho, J.C., Kim, S.J., and Kang, S.G. 2010b. Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Rhodobacterales bacterium HTCC2654. J. Biosci. Bioeng. 109, 539–544.

    Article  CAS  Google Scholar 

  • Woo, J.H., Kang, J.H., Kang, S.G., Hwang, Y.O., and Kim, S.J. 2009. Cloning and characterization of an epoxide hydrolase from Novosphingovium aromaticivorans. Appl. Microbiol. Biotechnol. 82, 873–881.

    Article  CAS  Google Scholar 

  • Woo, J.H., Kwon, T.H., Kim, J.T., Kim, C.G., and Lee, E.Y. 2013. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for bio-catalytic resolution of racemic styrene oxide and styrene oxide derivatives. Biotechnol. Lett. 35, 599–606.

    Article  CAS  Google Scholar 

  • Woo, J.H. and Lee, E.Y. 2014. Enantioselective hydrolysis of racemic styrene oxide and its substituted derivatives using newly isolated Sphingopyxis sp. exhibiting a novel epoxide hydrolase activity. Biotechnol. Lett. 36, 357–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by Gyeongsangbuk-do R&D Program (to JHW) and the grants provided from the National Research Foundation of Korea and (2018R1D1A1A02086230; to HYS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hee Woo or Ho Young Suk.

Ethics declarations

The authors have no financial conflicts of interest to declare.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, JH., Kim, HS., Park, NH. et al. Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity. J Microbiol. 59, 675–680 (2021). https://doi.org/10.1007/s12275-021-1023-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1023-x

Keywords

Navigation