Skip to main content
Log in

Host—microbial interactions in metabolic diseases: from diet to immunity

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Shanab, A. and Quigley, E.M. 2010. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7, 691–701.

    Article  PubMed  Google Scholar 

  • Agarwal, P., Khatri, P., Billack, B., Low, W.K., and Shao, J. 2014. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm. Res. 31, 3404–3414.

    Article  CAS  PubMed  Google Scholar 

  • Al-Waiz, M., Mikov, M., Mitchell, S.C., and Smith, R.L. 1992. The exogenous origin of trimethylamine in the mouse. Metabolism 41, 135–136.

    Article  CAS  PubMed  Google Scholar 

  • Alang, N. and Kelly, C.R. 2015. Weight gain after fecal microbiota transplantation. Open Forum Infect. Dis. 2, ofv004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alex, S., Lange, K., Amolo, T., Grinstead, J.S., Haakonsson, A.K., Szalowska, E., Koppen, A., Mudde, K., Haenen, D., Al-Lahham, S., et al. 2013. Short-chain fatty acids stimulate angiopoietinlike 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol. Cell. Biol. 33, 1303–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliasgharzadeh, A., Dehghan, P., Gargari, B.P., and Asghari-Jafarabadi, M. 2015. Resistant dextrin, as a prebiotic, improves insulin resistance and inflammation in women with type 2 diabetes: a randomised controlled clinical trial. Br. J. Nutr. 113, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Allegretti, J.R., Kassam, Z., Hurtado, J., Marchesi, J.R., Mullish, B.H., Chiang, A., Thompson, C.C., and Cummings, B.P. 2021. Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones 20, 209–211.

    Article  PubMed  Google Scholar 

  • Allegretti, J.R., Kassam, Z., Mullish, B.H., Chiang, A., Carrellas, M., Hurtado, J., Marchesi, J.R., McDonald, J.A.K., Pechlivanis, A., Barker, G.F., et al. 2020. Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin. Gastroenterol. Hepatol. 18, 855–863.

    Article  CAS  PubMed  Google Scholar 

  • Allin, K.H., Tremaroli, V., Caesar, R., Jensen, B.A.H., Damgaard, M.T.F., Bahl, M.I., Licht, T.R., Hansen, T.H., Nielsen, T., Dantoft, T.M., et al. 2018. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L.G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., et al. 2011. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo, J.R., Tazi, A., Burlen-Defranoux, O., Vichier-Guerre, S., Nigro, G., Licandro, H., Demignot, S., and Sansonetti, P.J. 2020. Fermentation products of commensal bacteria alter enterocyte lipid metabolism. Cell Host Microbe 27, 358–375.

    Article  PubMed  CAS  Google Scholar 

  • Aron-Wisnewsky, J., Prifti, E., Belda, E., Ichou, F., Kayser, B.D., Dao, M.C., Verger, E.O., Hedjazi, L., Bouillot, J.L., Chevallier, J.M., et al. 2019. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 70–82.

    Article  CAS  PubMed  Google Scholar 

  • Asgharian, H., Homayouni-Rad, A., Mirghafourvand, M., and Mohammad-Alizadeh-Charandabi, S. 2020. Effect of probiotic yoghurt on plasma glucose in overweight and obese pregnant women: a randomized controlled clinical trial. Eur. J. Nutr. 59, 205–215.

    Article  CAS  PubMed  Google Scholar 

  • Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., and Gordon, J.I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 104, 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggio, L.L. and Drucker, D.J. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, T., Alaniz, R.C., Wood, T.K., and Jayaraman, A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 107, 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Begley, M., Gahan, C.G., and Hill, C. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651.

    Article  CAS  PubMed  Google Scholar 

  • Behrouz, V., Aryaeian, N., Zahedi, M.J., and Jazayeri, S. 2020. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J. Food Sci. 85, 3611–3617.

    Article  CAS  PubMed  Google Scholar 

  • Bomhof, M.R., Parnell, J.A., Ramay, H.R., Crotty, P., Rioux, K.P., Probert, C.S., Jayakumar, S., Raman, M., and Reimer, R.A. 2019. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur. J. Nutr. 58, 1735–1745.

    Article  CAS  PubMed  Google Scholar 

  • Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C.D., Seed, P.C., Rawls, J.F., David, L.A., et al. 2016. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., Muir, A.I., Wigglesworth, M.J., Kinghorn, I., Fraser, N.J., et al. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319.

    Article  CAS  PubMed  Google Scholar 

  • Buffie, C.G., Bucci, V., Stein, R.R., McKenney, P.T., Ling, L., Gobourne, A., No, D., Liu, H., Kinnebrew, M., Viale, A., et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Burgueño, J.F. and Abreu, M.T. 2020. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 17, 263–278.

    Article  PubMed  CAS  Google Scholar 

  • Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  • Cerdó, T., García-Santos, J.A., Bermúdez, M.G., and Campoy, C. 2019. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11, 635.

    Article  PubMed Central  CAS  Google Scholar 

  • Chambers, E.S., Viardot, A., Psichas, A., Morrison, D.J., Murphy, K.G., Zac-Varghese, S.E., MacDougall, K., Preston, T., Tedford, C., Finlayson, G.S., et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754.

    Article  CAS  PubMed  Google Scholar 

  • Chelakkot, C., Choi, Y., Kim, D.K., Park, H.T., Ghim, J., Kwon, Y., Jeon, J., Kim, M.S., Jee, Y.K., Gho, Y.S., et al. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Guo, L., Zhang, Y., Walzem, R.L., Pendergast, J.S., Printz, R.L., Morris, L.C., Matafonova, E., Stien, X., Kang, L., et al. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124, 3391–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimerel, C., Emery, E., Summers, D.K., Keyser, U., Gribble, F.M., and Reimann, F. 2014. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, S.H., Cho, Y.J., and Park, J.H. 2022. The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. J. Microbiol. 60, 118–127.

    Article  CAS  PubMed  Google Scholar 

  • Cirstea, M., Radisavljevic, N., and Finlay, B.B. 2018. Good bug, bad bug: breaking through microbial stereotypes. Cell Host Microbe 23, 10–13.

    Article  CAS  PubMed  Google Scholar 

  • Cox, L.M., Yamanishi, S., Sohn, J., Alekseyenko, A.V., Leung, J.M., Cho, I., Kim, S.G., Li, H., Gao, Z., Mahana, D., et al. 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven, L., Rahman, A., Nair Parvathy, S., Beaton, M., Silverman, J., Qumosani, K., Hramiak, I., Hegele, R., Joy, T., Meddings, J., et al. 2020. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am. J. Gastroenterol. 115, 1055–1065.

    Article  PubMed  Google Scholar 

  • Cui, X., Ye, L., Li, J., Jin, L., Wang, W., Li, S., Bao, M., Wu, S., Li, L., Geng, B., et al. 2018. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Silva, H.E., Teterina, A., Comelli, E.M., Taibi, A., Arendt, B.M., Fischer, S.E., Lou, W., and Allard, J.P. 2018. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci. Rep. 8, 1466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., Kayser, B.D., Levenez, F., Chilloux, J., Hoyles, L., et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J.E., Gabler, N.K., Walker-Daniels, J., and Spurlock, M.E. 2008. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity 16, 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  • de Mello, V.D., Paananen, J., Lindström, J., Lankinen, M.A., Shi, L., Kuusisto, J., Pihlajamäki, J., Auriola, S., Lehtonen, M., Rolandsson, O., et al. 2017. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 7, 46337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghan, P., Gargari, B.P., and Asghari Jafar-abadi, M. 2014a. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 30, 418–423.

    Article  CAS  PubMed  Google Scholar 

  • Dehghan, P., Gargari, B.P., Asghari Jafar-abadi, M., and Aliasgharzadeh, A. 2014b. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int. J. Food Sci. Nutr. 65, 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien, M., Collado, M.C., Ben-Amor, K., Salminen, S., and de Vos, W.M. 2008. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648.

    Article  CAS  PubMed  Google Scholar 

  • Dewulf, E.M., Cani, P.D., Claus, S.P., Fuentes, S., Puylaert, P.G.B., Neyrinck, A.M., Bindels, L.B., de Vos, W.M., Gibson, G.R., Thissen, J.P., et al. 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121.

    Article  CAS  PubMed  Google Scholar 

  • Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, F.F., Liu, J.H., and March, J.C. 2015. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64, 1794–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumas, M.E., Barton, R.H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., Fearnside, J., Tatoud, R., Blanc, V., Lindon, J.C., et al. 2006. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, S.H., Lobley, G.E., Holtrop, G., Ince, J., Johnstone, A.M., Louis, P., and Flint, H.J. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724.

    Article  CAS  Google Scholar 

  • Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., Clemente, J.C., Knight, R., Heath, A.C., Leibel, R.L., et al. 2013. The long-term stability of the human gut microbiota. Science 341, 1237439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fei, N., Bruneau, A., Zhang, X., Wang, R., Wang, J., Rabot, S., Gérard, P., and Zhao, L. 2020. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease. mBio 11, e03263–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, N. and Zhao, L. 2013. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Finucane, M.M., Sharpton, T.J., Laurent, T.J., and Pollard, K.S. 2014. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE 9, e84689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H.K., et al. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeland, K.R. and Wolever, T.M. 2010. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br. J. Nutr. 103, 460–466.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., and Ye, J. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavaldà-Navarro, A., Moreno-Navarrete, J.M., Quesada-López, T., Cairó, M., Giralt, M., Fernández-Real, J.M., and Villarroya, F. 2016. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia 59, 2208–2218.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, Kn., Stanton, C., Swanson, K.S., Cani, P.D., et al. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502.

    Article  PubMed  Google Scholar 

  • Gilijamse, P.W., Hartstra, A.V., Levin, E., Wortelboer, K., Serlie, M.J., Ackermans, M.T., Herrema, H., Nederveen, A.J., Imangaliyev, S., Aalvink, S., et al. 2020. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose-response effects on glucose metabolism in human subjects with metabolic syndrome. npj Biofilms Microbiomes 6, 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, F.J., Jiang, C., Bisson, W.H., and Patterson, A.D. 2015. Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity. J. Hepatol. 62, 1234–1236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gueimonde, M., Sánchez, B., de los Reyes-Gavilán, C.G., and Margolles, A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4, 202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghikia, A., Li, X.S., Liman, T.G., Bledau, N., Schmidt, D., Zimmermann, F., Kränkel, N., Widera, C., Sonnenschein, K., Haghikia, A., et al. 2018. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler. Thromb. Vasc. Biol. 38, 2225–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath-Pagliuso, S., Rogers, W.J., Tullis, K., Seidel, S.D., Cenijn, P.H., Brouwer, A., and Denison, M.S. 1998. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37, 11508–11515.

    Article  CAS  PubMed  Google Scholar 

  • Henrick, B.M., Rodriguez, L., Lakshmikanth, T., Pou, C., Henckel, E., Arzoomand, A., Olin, A., Wang, J., Mikes, J., Tan, Z., et al. 2021. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514.

    Article  PubMed  Google Scholar 

  • Hoyles, L., Fernández-Real, J.M., Federici, M., Serino, M., Abbott, J., Charpentier, J., Heymes, C., Luque, J.L., Anthony, E., Barton, R.H., et al. 2018. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard, T.D., Murray, I.A., Bisson, W.H., Lahoti, T.S., Gowda, K., Amin, S.G., Patterson, A.D., and Perdew, G.H. 2015. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iraporda, C., Errea, A., Romanin, D.E., Cayet, D., Pereyra, E., Pignataro, O., Sirard, J.C., Garrote, G.L., Abraham, A.G., and Rumbo, M. 2015. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220, 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, E.E., Rendina-Ruedy, E., Smith, B.J., and Lacombe, V.A. 2015. Loss of toll-like receptor 4 function partially protects against peripheral and cardiac glucose metabolic derangements during a long-term high-fat diet. PLoS ONE 10, e0142077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, M.A., Verdi, S., Maxan, M.E., Shin, C.M., Zierer, J., Bowyer, R.C.E., Martin, T., Williams, F.M.K., Menni, C., Bell, J.T., et al. 2018. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssen, A.W.F., Katiraei, S., Bartosinska, B., Eberhard, D., Willems van Dijk, K., and Kersten, S. 2018. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia 61, 1447–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C., Xie, C., Lv, Y., Li, J., Krausz, K.W., Shi, J., Brocker, C.N., Desai, D., Amin, S.G., Bisson, W.H., et al. 2015. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166.

    Article  CAS  PubMed  Google Scholar 

  • Jie, Z., Xia, H., Zhong, S.L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., et al. 2017. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamo, T., Akazawa, H., Suda, W., Saga-Kamo, A., Shimizu, Y., Yagi, H., Liu, Q., Nomura, S., Naito, A.T., Takeda, N., et al. 2017. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12, e0174099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsson, F.H., Fåk, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Backhed, F., and Nielsen, J. 2012a. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, C.L.J., Onnerfält, J., Xu, J., Molin, G., Ahrné, S., and Thorngren-Jerneck, K. 2012b. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261.

    Article  PubMed  Google Scholar 

  • Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., Nielsen, J., and Backhed, F. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., et al. 2003. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440.

    Article  CAS  PubMed  Google Scholar 

  • Kieser, K.J. and Kagan, J.C. 2017. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829.

    Article  PubMed  CAS  Google Scholar 

  • Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopen, A.M., Almeida, E.L., Attaye, I., Witjes, J.J., Rampanelli, E., Majait, S., Kemper, M., Levels, J.H.M., Schimmel, A.W.M., Herrema, H., et al. 2021. Effect of fecal microbiota transplantation combined with mediterranean diet on insulin sensitivity in subjects with metabolic syndrome. Front. Microbiol. 12, 662159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kootte, R.S., Levin, E., Salojärvi, J., Smits, L.P., Hartstra, A.V., Udayappan, S.D., Hermes, G., Bouter, K.E., Koopen, A.M., Holst, J.J., et al. 2017. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Korecka, A., de Wouters, T., Cultrone, A., Lapaque, N., Pettersson, S., Doré, J., Blottière, H.M., and Arulampalam, V. 2013. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1025–G1037.

    Article  CAS  PubMed  Google Scholar 

  • Kummen, M., Mayerhofer, C.C.K., Vestad, B., Broch, K., Awoyemi, A., Storm-Larsen, C., Ueland, T., Yndestad, A., Hov, J.R., and Trøseid, M. 2018. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J. Am. Coll. Cardiol. 71, 1184–1186.

    Article  PubMed  Google Scholar 

  • Lamas, B., Richard, M.L., Leducq, V., Pham, H.P., Michel, M.L., Da Costa, G., Bridonneau, C., Jegou, S., Hoffmann, T.W., Natividad, J.M., et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang, S. and Schnabl, B. 2020. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host Microbe 28, 233–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang, D.H., Yeung, C.K., Peter, R.M., Ibarra, C., Gasser, R., Itagaki, K., Philpot, R.M., and Rettie, A.E. 1998. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol. 56, 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, N., Vogensen, F.K., van den Berg, F.W., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., Al-Soud, W.A., Sørensen, S.J., Hansen, L.H., and Jakobsen, M. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laursen, M.F., Sakanaka, M., von Burg, N., Mörbe, U., Andersen, D., Moll, J.M., Pekmez, C.T., Rivollier, A., Michaelsen, K.F., Mølgaard, C., et al. 2021. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 6, 1367–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawley, T.D., Clare, S., Walker, A.W., Stares, M.D., Connor, T.R., Raisen, C., Goulding, D., Rad, R., Schreiber, F., Brandt, C., et al. 2012. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546.

    Article  CAS  PubMed  Google Scholar 

  • Le Poul, E., Loison, C., Struyf, S., Springael, J.Y., Lannoy, V., Decobecq, M.E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., et al. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Park, S., Oh, N., Park, J., Kwon, M., Seo, J., and Roh, S. 2021a. Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Prolif. 54, e13039.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y., Nemet, I., Wang, Z., Lai, H.T.M., de Oliveira Otto, M.C., Lemaitre, R.N., Fretts, A.M., Sotoodehnia, N., Budoff, M., DiDonato, J.A., et al. 2021b. Longitudinal plasma measures of trimethylamine N-oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults. J. Am. Heart Assoc. 10, e020646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., and Staels, B. 2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191.

    Article  CAS  PubMed  Google Scholar 

  • Legrand, R., Lucas, N., Dominique, M., Azhar, S., Deroissart, C., Le Solliec, M.A., Rondeaux, J., Nobis, S., Guérin, C., Léon, F., et al. 2020. Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice-a new potential probiotic for appetite and body weight management. Int. J. Obes. 44, 1041–1051.

    Article  CAS  Google Scholar 

  • Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102, 11070–11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Bostick, J.W., Ye, J., Qiu, J., Zhang, B., Urban, J.F. Jr, Avram, D., and Zhou, L. 2018. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49, 915–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Jiang, C., Krausz, K.W., Li, Y., Albert, I., Hao, H., Fabre, K.M., Mitchell, J.B., Patterson, A.D., and Gonzalez, F.J. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Xu, Q., Jiang, T., Fang, S., Wang, G., Zhao, J., Zhang, H., and Chen, W. 2016. A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food Funct. 7, 4851–4860.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S., Moon, J.H., Shin, C.M., Jeong, D., and Kim, B. 2020. Effect of Lactobacillus sakei, a probiotic derived from Kimchi, on body fat in Koreans with obesity: a randomized controlled study. Endocrinol. Metab. 35, 425–434.

    Article  CAS  Google Scholar 

  • Lin, H.V., Frassetto, A., Kowalik, E.J. Jr, Nawrocki, A.R., Lu, M.M., Kosinski, J.R., Hubert, J.A., Szeto, D., Yao, X., Forrest, G., et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-in-dependent mechanisms. PLoS ONE 7, e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., Krogh-Andersen, K., Pelletier, J., Marcotte, H., Östenson, C.G., and Hammarström, L. 2016. Oral delivery of pentameric glucagon-like peptide-1 by recombinant Lactobacillus in diabetic rats. PLoS ONE 11, e0162733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, R., Hong, J., Xu, X., Feng, Q., Zhang, D., Gu, Y., Shi, J., Zhao, S., Liu, W., Wang, X., et al. 2017. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., Caussy, C., Bettencourt, R., Highlander, S.K., et al. 2017. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Siles, M., Duncan, S.H., Garcia-Gil, L.J., and Martinez-Medina, M. 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck, H., Tsai, S., Chung, J., Clemente-Casares, X., Ghazarian, M., Revelo, X.S., Lei, H., Luk, C.T., Shi, S.Y., Surendra, A., et al. 2015. Regulation of obesity-related insulin resistance with gut antiinflammatory agents. Cell Metab. 21, 527–542.

    Article  CAS  PubMed  Google Scholar 

  • Luedde, M., Winkler, T., Heinsen, F.A., Rühlemann, M.C., Spehlmann, M.E., Bajrovic, A., Lieb, W., Franke, A., Ott, S.J., and Frey, N. 2017. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 4, 282–290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734.

    Article  CAS  PubMed  Google Scholar 

  • Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. 1999. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R., Miquel, S., Benevides, L., Bridonneau, C., Robert, V., Hudault, S., Chain, F., Berteau, O., Azevedo, V., Chatel, J.M., et al. 2017. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 8, 1226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-del Campo, A., Bodea, S., Hamer, H.A., Marks, J.A., Haiser, H.J., Turnbaugh, P.J., and Balskus, E.P. 2015. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6, e00042-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Guryn, K., Hubert, N., Frazier, K., Urlass, S., Musch, M.W., Ojeda, P., Pierre, J.F., Miyoshi, J., Sontag, T.J., Cham, C.M., et al. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H.C., Rolph, M.S., Mackay, F., Artis, D., et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May-Zhang, L.S., Chen, Z., Dosoky, N.S., Yancey, P.G., Boyd, K.L., Hasty, A.H., Linton, M.F., and Davies, S.S. 2019. Administration of N-acyl-phosphatidylethanolamine expressing bacteria to low density lipoprotein receptor-/- mice improves indices of cardiometabolic disease. Sci. Rep. 9, 420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michael, D.R., Davies, T.S., Jack, A.A., Masetti, G., Marchesi, J.R., Wang, D., Mullish, B.H., and Plummer, S.F. 2021. Daily supplementation with the Lab4P probiotic consortium induces significant weight loss in overweight adults. Sci. Rep. 11, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinaro, A., Koh, A., Wu, H., Schoeler, M., Faggi, M.I., Carreras, A., Hallén, A., Bäckhed, F., and Caesar, R. 2020. Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity. Mol. Metab. 37, 100997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natividad, J.M., Agus, A., Planchais, J., Lamas, B., Jarry, A.C., Martin, R., Michel, M.L., Chong-Nguyen, C., Roussel, R., Straube, M., et al. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T., and Kaplan, J. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093.

    Article  CAS  PubMed  Google Scholar 

  • Nicolucci, A.C., Hume, M.P., Martínez, I., Mayengbam, S., Walter, J., and Reimer, R.A. 2017. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153, 711–722.

    Article  PubMed  Google Scholar 

  • Nilsson, N.E., Kotarsky, K., Owman, C., and Olde, B. 2003. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  • Orr, J.S., Puglisi, M.J., Ellacott, K.L.J., Lumeng, C.N., Wasserman, D.H., and Hasty, A.H. 2012. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes 61, 2718–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, J., Xu, W., Zhang, X., Wong, G.L.H., Chan, A.W.H., Chan, H.Y., Tse, C.H., Shu, S.S.T., Choi, P.C.L., Chan, H.L.Y., et al. 2017. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 46, 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Parker, A., Lawson, M.A.E., Vaux, L., and Pin, C. 2018. Host-mi-crobe interaction in the gastrointestinal tract. Environ. Microbiol. 20, 2337–2353.

    Article  PubMed  Google Scholar 

  • Parnell, J.A. and Reimer, R.A. 2009. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89, 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  • Parséus, A., Sommer, N., Sommer, F., Caesar, R., Molinaro, A., Ståhlman, M., Greiner, T.U., Perkins, R., and Backhed, F. 2017. Microbiota-induced obesity requires farnesoid X receptor. Gut 66, 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A.H., Forslund, K., Hildebrand, F., Prifti, E., Falony, G., et al. 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381.

    Article  CAS  PubMed  Google Scholar 

  • Pendyala, S., Walker, J.M., and Holt, P.R. 2012. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.

    Article  CAS  PubMed  Google Scholar 

  • Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F., Kibbey, R.G., Goodman, A.L., and Shulman, G.I. 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, L.W. and Artis, D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, C., Bell, R., Klag, K.A., Lee, S.H., Soto, R., Ghazaryan, A., Buhrke, K., Ekiz, H.A., Ost, K.S., Boudina, S., et al. 2019. T cell-mediated regulation of the microbiota protects against obesity. Science 365, eaat9351.

  • Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Powell, D.N., Swimm, A., Sonowal, R., Bretin, A., Gewirtz, A.T., Jones, R.M., and Kalman, D. 2020. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc. Natl. Acad. Sci. USA 117, 21519–21526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prawitt, J., Abdelkarim, M., Stroeve, J.H.M., Popescu, I., Duez, H., Velagapudi, V.R., Dumont, J., Bouchaert, E., van Dijk, T.H., Lucas, A., et al. 2011. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psichas, A., Sleeth, M.L., Murphy, K.G., Brooks, L., Bewick, G.A., Hanyaloglu, A.C., Ghatei, M.A., Bloom, S.R., and Frost, G. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429.

    Article  CAS  Google Scholar 

  • Pussinen, P.J., Havulinna, A.S., Lehto, M., Sundvall, J., and Salomaa, V. 2011. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34, 392–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Rabot, S., Membrez, M., Bruneau, A., Gérard, P., Harach, T., Moser, M., Raymond, F., Mansourian, R., and Chou, C.J. 2010. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959.

    CAS  PubMed  Google Scholar 

  • Remely, M., Tesar, I., Hippe, B., Gnauer, S., Rust, P., and Haslberger, A.G. 2015. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 6, 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A.B., Gu, X., Buffa, J.A., Hurd, A.G., Wang, Z., Zhu, W., Gupta, N., Skye, S.M., Cody, D.B., Levison, B.S., et al. 2018. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, M.A.M. and Aronoff, D.M. 2016. The influence of nonsteroidal anti-inflammatory drugs on the gut microbiome. Clin. Microbiol. Infect. 22, 178.e1–178.e9.

    Article  CAS  Google Scholar 

  • Romão da Silva, L.F., de Oliveira, Y., de Souza, E.L., de Luna Freire, M.O., Braga, V.A., Magnani, M., and de Brito Alves, J.L. 2020. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: a randomized, triple-blind, placebo-controlled trial. Food Funct. 11, 7152–7163.

    Article  PubMed  Google Scholar 

  • Rosberg-Cody, E., Stanton, C., O’Mahony, L., Wall, R., Shanahan, F., Quigley, E.M., Fitzgerald, G.F., and Ross, R.P. 2011. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology 157, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Saberi, M., Woods, N.B., de Luca, C., Schenk, S., Lu, J.C., Bandyopadhyay, G., Verma, I.M., and Olefsky, J.M. 2009. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M.M., Sanders, M.E., Shamir, R., Swann, J.R., Szajewska, H., et al. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.M.A.E., Oosting, M., et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayin, S.I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H.U., Bamberg, K., Angelin, B., Hyötyläinen, T., Orešič, M., and Bäckhed, F. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S.A., Fu, J., and Chang, P.V. 2020. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 117, 19376–19387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semova, I., Carten, J.D., Stombaugh, J., Mackey, L.C., Knight, R., Farber, S.A., and Rawls, J.F. 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Senthong, V., Wang, Z., Li, X.S., Fan, Y., Wu, Y., Tang, W.H., and Hazen, S.L. 2016. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J. Am. Heart Assoc. 5, e002816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada, Y., Kinoshita, M., Harada, K., Mizutani, M., Masahata, K., Kayama, H., and Takeda, K. 2013. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8, e80604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solito, A., Bozzi Cionci, N., Calgaro, M., Caputo, M., Vannini, L., Hasballa, I., Archero, F., Giglione, E., Ricotti, R., Walker, G.E., et al. 2021. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin. Nutr. 40, 4585–4594.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg, J.L. and Backhed, F. 2016. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., et al. 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Yu, Z., Ye, X., Zou, S., Li, H., Yu, D., Wu, H., Chen, Y., Dore, J., Clément, K., et al. 2010. A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care 33, 1925–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M., et al. 2020. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sze, M.A. and Schloss, P.D. 2016. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, W.H.W., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y., and Hazen, S.L. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y.N., Akkermann, K., Jarv, A., Ouelaa, W., Takagi, K., Ghouzali, I., et al. 2014. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss, C.A., Itav, S., Rothschild, D., Meijer, M.T., Levy, M., Moresi, C., Dohnalová, L., Braverman, S., Rozin, S., Malitsky, S., et al. 2016. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Thingholm, L.B., Rühlemann, M.C., Koch, M., Fuqua, B., Laucke, G., Boehm, R., Bang, C., Franzosa, E.A., Hübenthal, M., Rahnavard, A., et al. 2019. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., et al. 2009. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg, H., Zmora, N., Adolph, T.E., and Elinav, E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54.

    Article  CAS  PubMed  Google Scholar 

  • Tims, S., Derom, C., Jonkers, D.M., Vlietinck, R., Saris, W.H., Kleerebezem, M., de Vos, W.M., and Zoetendal, E.G. 2013. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 7, 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Tirosh, A., Calay, E.S., Tuncman, G., Claiborn, K.C., Inouye, K.E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K.S., Ron, I., et al. 2019. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Transl. Med. 11, eaav0120.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., and Gribble, F.M. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabelsi, M.S., Daoudi, M., Prawitt, J., Ducastel, S., Touche, V., Sayin, S.I., Perino, A., Brighton, C.A., Sebti, Y., Kluza, J., et al. 2015. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629.

    Article  PubMed  Google Scholar 

  • Turnbaugh, P.J., Backhed, F., Fulton, L., and Gordon, J.I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature 457, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., Visser, C.E., Kuijper, E.J., Bartelsman, J.F., Tijssen, J.G., et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Vich Vila, A., Collij, V., Sanna, S., Sinha, T., Imhann, F., Bourgonje, A.R., Mujagic, Z., Jonkers, D., Masclee, A.A.M., Fu, J., et al. 2020. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay, A., Astbury, S., Le Roy, C., Spector, T.D., and Valdes, A.M. 2021. The prebiotic effects of omega-3 fatty acid supplementation: a six-week randomised intervention trial. Gut Microbes 13, 1.

    PubMed  Google Scholar 

  • Virtue, A.T., McCright, S.J., Wright, J.M., Jimenez, M.T., Mowel, W.K., Kotzin, J.J., Joannas, L., Basavappa, M.G., Spencer, S.P., Clark, M.L., et al. 2019. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci. Transl. Med. 11, eaav1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R.S., Bartelsman, J.F.W.M., Dallinga-Thie, G.M., Ackermans, M.T., Serlie, M.J., Oozeer, R., et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.

    Article  CAS  PubMed  Google Scholar 

  • Wahlström, A., Sayin, S.I., Marschall, H.U., and Backhed, F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Walters, W.A., Xu, Z., and Knight, R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Roberts, A.B., Buffa, J.A., Levison, B.S., Zhu, W., Org, E., Gu, X., Huang, Y., Zamanian-Daryoush, M., Culley, M.K., et al. 2015. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, M., Houten, S.M., Mataki, C., Christoffolete, M.A., Kim, B.W., Sato, H., Messaddeq, N., Harney, J.W., Ezaki, O., Kodama, T., et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, C. and Trent, M.S. 2014. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128.

    Article  CAS  PubMed  Google Scholar 

  • Woting, A., Pfeiffer, N., Loh, G., Klaus, S., and Blaut, M. 2014. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio 5, e01530–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, X. and Shah, Y.M. 2013. Intestinal iron homeostasis and colon tumorigenesis. Nutrients 5, 2333–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Jiang, Y., Yang, W., Du, F., Yao, Y., Shi, C., and Wang, C. 2015. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb. Cell Fact. 14, 202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo, W., Zieba, J.K., Foegeding, N.J., Torres, T.P., Shelton, C.D., Shealy, N.G., Byndloss, A.J., Cevallos, S.A., Gertz, E., Tiffany, C.R., et al. 2021. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, H.S., Cho, C.H., Yun, M.S., Jang, S.J., You, H.J., Kim, J.H., Han, D., Cha, K.H., Moon, S.H., Lee, K., et al. 2021. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573.

    Article  CAS  PubMed  Google Scholar 

  • Yu, E.W., Gao, L., Stastka, P., Cheney, M.C., Mahabamunuge, J., Torres Soto, M., Ford, C.B., Bryant, J.A., Henn, M.R., and Hohmann, E.L. 2020. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 17, e1003051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, J., Chen, C., Cui, J., Lu, J., Yan, C., Wei, X., Zhao, X., Li, N., Li, S., Xue, G., et al. 2019. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Yue, S.J., Liu, J., Wang, A.T., Meng, X.T., Yang, Z.R., Peng, C., Guan, H.S., Wang, C.Y., and Yan, D. 2019. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Am. J. Physiol. Endocrinol. Metab. 316, E73–E85.

    Article  CAS  PubMed  Google Scholar 

  • Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  • Zeisel, S.H., Mar, M.H., Howe, J.C., and Holden, J.M. 2003. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133, 1302–1307.

    Article  CAS  PubMed  Google Scholar 

  • Zelante, T., Iannitti, R.G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Massi-Benedetti, C., Fallarino, F., et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., DiBaise, J.K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M.D., Wing, R., Rittmann, B.E., et al. 2009. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 106, 2365–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., Chen, Y., and Ji, L. 2013. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., Chen, B., Yang, F., Zhao, Y., Shi, Z., et al. 2019. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatmentnaive type 2 diabetics. EBioMedicine 47, 373–383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., and Gill, S.R. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q., Gao, R., Zhang, Y., Pan, D., Zhu, Y., Zhang, X., Yang, R., Jiang, R., Xu, Y., and Qin, H. 2018. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol. Genomics 50, 893–903.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., et al. 2016. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouari, R., Hamden, K., El Feki, A., Chaabouni, K., Makni-Ayadi, F., Sallemi, F., Ellouze-Chaabouni, S., and Ghribi-Aydi, D. 2017. Evaluation of Bacillus subtilis SPB1 biosurfactant effects on hyperglycemia, angiotensin I-converting enzyme (ACE) activity and kidney function in rats fed on high-fat-high-fructose diet. Arch. Physiol. Biochem. 123, 112–120.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Suh Kyungbae Foundation. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

JHP conceived the study; JHL and JHP wrote and revised the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Joo-Hong Park.

Additional information

Conflict of Interest

The authors declare no commercial or financial relationships that could be construed as potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Park, JH. Host—microbial interactions in metabolic diseases: from diet to immunity. J Microbiol. 60, 561–575 (2022). https://doi.org/10.1007/s12275-022-2087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2087-y

Keywords

Navigation