Skip to main content
Log in

Fluid geochemistry and isotope compositions to delineate physical processes in Wayang Windu geothermal reservoir, Indonesia

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Wayang Windu geothermal field, which is situated in quaternary volcanic rock, has been delivering 227 MW of electricity and is planned to be developed in near future. Isotope and geochemistry study has been done to support understanding of the system. Samples were taken from thermal manifestations and production wells (two-phase and dry steam wells) to analyse its isotope and chemical compositions. Most of the hot springs are bicarbonate type and have neutral pH values, except for steam heated waters found near fumarolic fields, which are acid sulfate type waters. Deep brine fluids are of mature chloride type, while other deep dilute fluids are bicarbonate type indicates the existance of condensate layer. Solute and gas geothermometer calculation showed good agreement with measured temperature, i.e., 280–300 °C. However, gas-gas equilibria calculation showed increasing T and decreasing y (steam fraction) compare to previous study which indicates contribution form hotter source with high liquid saturation. Aside from different recharge area of thermal manifestation and production wells, the isotopes composition also shows physical processes in reservoir, i.e., adiabatic boiling, steam separation at different temperature (140–260 °C) and steam fraction (0.30–0.65), and also mixing process with meteoric water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrenica, A.B., Harijoko, A., Kusumah, Y.I., and Bogie, I., 2010, Characteristics of hydrothermal alteration in part of the northern vapordominated reservoir of the Wayang Windu geothermal field, West Java. World Geothermal Congress 2010, Bali, Apr. 25–29, p. 25–29.

    Google Scholar 

  • Alzwar, M., Akbar, N., and Bachri, S., 2004, Geological map of the Garut and Pameungpeuk quadrangle, Java (1:100,000) (2nd edition). Geological Research and Development Centre, Bandung, Indonesia.

    Google Scholar 

  • Arnórsson, S., Bjarnason, J.Ö., Giroud, N., Gunnarsson, I., and Stefánsson, A., 2006, Sampling and analysis of geothermal fluids. Geofluids, 6, 203–216. https://doi.org/10.1111/j.1468-8123.2006.00147.x

    Google Scholar 

  • Blattner, P., 1985, Isotope shift data and the natural evolution of geothermal systems. Chemical Geology, 49, 187–203. https://doi.org/10.1016/0009-2541(85)90155-X

    Article  Google Scholar 

  • Bogie, I., Kusumah, Y.I., and Wisnandary, M.C., 2008, Overview of the Wayang Windu geothermal field, West Java, Indonesia. Geothermics, 37, 347–365. https://doi.org/10.1016/j.geothermics.2008.03.004

    Google Scholar 

  • Bogie, I. and Mackenzie, K.M., 1998, The application of a volcanic facies model to an andesitic stratovolcano hosted geothermal system at Wayang Windu, Java, Indonesia. Proceedings of the 20th New Zealand Geothermal Workshop, Auckland, Nov. 11–13, p. 265–270.

    Google Scholar 

  • Budiardjo, B., 1992. Petrographic study of cores and cuttings from drillhole WWD-1. Project Report 92.04, University of Auckland, New Zealand, 43 p.

    Google Scholar 

  • D’Amore, F., 1991, Gas geochemistry as a link between geothermal exploration and exploitation. In: {ieD’Amore, F.} (ed.), Application of Geochemistry in Geothermal Reservoir Development. United Nations Institute for Training and Research/United Nations Development Programme–Center for Small Energy Resources, Rome, p. 93–117.

    Google Scholar 

  • D’Amore, F. and Celati, R., 1983, Methodology for calculating steam quality in geothermal reservoirs. Geothermics, 12, 129–140. https://doi.org/10.1016/0375-6505(83)90023-8

    Article  Google Scholar 

  • D’Amore, F., Ramos-Candelaria, M.N., Seastres, J., Ruaya, J.R., and Nuti, S., 1993, Applications of gas chemistry in evaluating physical processes in the Southern Negros (Palinpinon) geothermal field, Philippines. Geothermics, 22, 535–553. https://doi.org/10.1016/0375-6505(93)90035-L

    Article  Google Scholar 

  • D’Amore, F. and Truesdell, A., 1985, Calculation of geothermal reservoir and steam fractions from gas compositions. Geothermal Resources Council Transactions, 9, 305–310.

    Google Scholar 

  • D’Amore, F. and Truesdell, A., 1995, Correlation between liquid saturation and physical phenomena in vapor-dominated geothermal reservoirs. World Geothermal Congress 1995, Florence, May 18–31, p. 1927–1932.

    Google Scholar 

  • Darma, S. and Gunawan, R., 2015, Country update: geothermal energy use and development in Indonesia. World Geothermal Congress 2015, Melbourne, Apr. 19–24, p. 25–30.

    Google Scholar 

  • Electroconsult, 2010, Geochemical Survey of the Wayang Windu Geothermal Field Java Island Indonesia. Geochemical Report for Star Energy Geothermal Indonesia, Ltd. (internal), Baranzate (MI), Italy, 52 p.

    Google Scholar 

  • Ellis, A.J. and Mahon, W.A.J., 1977, Chemistry and Geothermal Systems. Academic Press, New York, 378 p.

    Google Scholar 

  • Fadillah, A., Nugraha, T., and Gumilar, J., 2013, West Java geothermal update. 38th Workshop on Geothermal Reservoir Engineering 2013, Stanford, Feb. 11–13, p. 1503–1510.

    Google Scholar 

  • Ferreira, T. and Oskarsson, N., 1999, Chemistry and isotopic composition of fumarole discharges of Furnas caldera. Journal of Volcanology and Geothermal Research, 92, 169–179. https://doi.org/10.1016/S0377-0273(99)00074-8

    Article  Google Scholar 

  • Fournier, R.O., 1977, Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  Google Scholar 

  • Fournier, R.O. and Truesdell, A.H., 1973, An empirical Na-K-Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37, 1255–1275. https://doi.org/10.1016/0016-7037(73)90060-4

    Article  Google Scholar 

  • Fritz, P. and Clark, I.D., 1997, Environmental Isotopes in Hydrogeology (2nd edition). CRC Press/Lewis Publishers, New York, 328 p.

    Google Scholar 

  • Ganda, S. and Hantono, D., 1992, Alteration mineralogy of the Wayang Windu geothermal field, West Java Indonesia. 7th International Symposium on Water-Rock Interaction, Park City, Jul. 13–18, p.1405–1409.

    Google Scholar 

  • Giggenbach, W.F., 1984, Mass transfer in hydrothermal alteration systems–a conceptual approach. Geochimica et Cosmochimica Acta, 48, 2693–2711. https://doi.org/10.1016/0016-7037(84)90317-X

    Article  Google Scholar 

  • Giggenbach, W.F., 1987, Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2, 143–161. https://doi.org/10.1016/0883-2927(87)90030-8

    Article  Google Scholar 

  • Giggenbach, W.F., 1988, Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach, W.F., 1991, Chemical techniques in geothermal exploration. In: {ieD’Amore, F.} (ed.), Application of Geochemistry in Geothermal Reservoir Development. United Nations Institute for Training and Research/United Nations Development Programme–Center for Small Energy Resources, Rome, p. 119–144.

    Google Scholar 

  • Giggenbach, W.F., 1997a, The origin and evolution of fluids in magmatic-hydrothermal systems. In: {ieBarnes, H.L.} (ed.), Geochemistry of Hydrothermal Ore Deposits (3rd edition). John Wiley & Sons, New York. p. 737–796.

    Google Scholar 

  • Giggenbach, W.F., 1997b, Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heat flow sedimentary basins. Geochimica et Cosmochimica Acta, 61, 3763–3785. https://doi.org/10.1016/S0016-7037(97)00171-3

    Article  Google Scholar 

  • Giggenbach, W.F. and Goguel, R.L., 1989, Collection and analysis of geothermal and volcanic water and gas discharges (4th edition). Report No. CD2401, Chemistry Division, Department of Scientific and Industrial Research, Petone, New Zealand, 82 p.

    Google Scholar 

  • Glover, R.B., 1988, Boron distribution between liquid and vapour in geothermal fluids. 10th New Zealand Geothermal Workshop, Auckland, Nov. 2–4, p. 223–227.

    Google Scholar 

  • Guo, Q., Liu, M., Luo, L., Yan, K., Guo, W., Wu, G., Yan, W., and Wang, Y., 2019, Geochemical controls on magnesium and its speciation in various types of geothermal waters from typical felsic-rock-hosted hydrothermal systems in China. Geothermics, 81, 185–197. https://doi.org/10.1016/j.geothermics.2019.05.006

    Article  Google Scholar 

  • Hendrasto, F., 2005, Determination of recharge area of Gunung Wayang Windu geothermal system, West Java. Master Thesis, Bandung Institute of Technology, Bandung. 73 p. (in Indonesian).

    Google Scholar 

  • Hochstein, M.P. and Mc Kee, G.A.M., 1986, Boron in thermal spring systems in the Greater Auckland area (New Zealand). 8th New Zealang Geothermal Workshop, Auckland, Nov. 5–7, p. 219–223.

    Google Scholar 

  • Hochstein, M.P. and Sudarman, S., 2008, History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics, 37, 220–266. https://doi.org/10.1016/j.geothermics.2008.01.001

    Article  Google Scholar 

  • Horita, J. and Wesolowski, D.J., 1994, Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58, 3425–3437. https://doi.org/10.1016/0016-7037(94)90096-5

    Article  Google Scholar 

  • Joseph, E.P., Fournier, N., Lindsay, J.M., Robertson, R., and Beckles, D.M., 2013, Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia. Journal of Volcanology and Geothermal Research, 254, 23–36. https://doi.org/10.1016/j.jvolgeores.2012.12.013

    Article  Google Scholar 

  • Malik, D. and Abidin, Z., 2012, Geochemistry monitoring during drilling in Wayang Windu field, Indonesia. 34th New Zealand Geothermal Workshop, Auckland, Nov. 19–21, 6 p.

    Google Scholar 

  • Malik, D., Abidin, Z., and Pramono, B., 2020, Tritium tracer injection test at Wayang Windu Geothermal Field, West Java, Indonesia. Geothermics, 83, 101718. https://doi.org/10.1016/j.geothermics.2019.101718

    Article  Google Scholar 

  • Mayandari, R., Tada, Y., Kashiwaya, K., Koike, K., and Iskandar, I., 2020, Specifying recharge zones and mechanisms of the transitional geothermal field through hydrogen and oxygen isotope analyses with consideration of water-rock interaction. Geothermics, 86, 101797. https://doi.org/10.1016/j.geothermics.2019.101797

    Article  Google Scholar 

  • Moore, J.N., Allis, R.G., Nemcok, M., Powell, T.S., Bruton, C.J., Wannamaker, P.E., Raharjo, I.B., and Norman, D.I., 2008, The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. American Journal of Science, 308, 1–48. https://doi.org/10.2475/01.2008.01

    Article  Google Scholar 

  • Di Napoli, R., Federico, C., Aiuppa, A., D’ Antonio, M., and Valenza, M., 2013, Quantitative models of hydrothermal fluid-mineral reaction: the Ischia case. Geochimica et Cosmochimica Acta, 105, 108–129. https://doi.org/10.1016/j.gca.2012.11.039

    Article  Google Scholar 

  • Nicholson, K., 1993, Geothermal Fluids: Chemistry and Exploration Techniques. Springer, Berlin, 263 p.

    Book  Google Scholar 

  • Pang, Z. and Reed, M., 1998, Theoretical chemical thermometry on geothermal waters: problems and methods. Geochimica et Cosmochimica Acta, 62, 1083–1091. https://doi.org/10.1016/S0016-7037(98)00037-4

    Article  Google Scholar 

  • Powell, T., Moore, J., De Rocher, T., and Mc Culloch, J., 2001, Reservoir geochemistry of the Karaha-Telaga Bodas prospect, Indonesia. Geothermal Resources Council Transaction, 25, 363–367.

    Google Scholar 

  • Prasetio, R., Wiegand, B.A., Malik, D., and Sauter, M., 2015, Stable isotopes study of Wayang Windu geothermal field, Indonesia. World Geothermal Congress 2015, Melbourne, Apr. 19–25, 6 p.

    Google Scholar 

  • Ramadhan, Y., Sutrisno, L., Tasrif, A., and Bogie, I., 2012, Geological evaluation of the Waringin Formation as the host of a vapor-dominated geothermal reservoir at the Wayang Windu geothermal field. 34th New Zealand Geothermal Workshop, Auckland, Nov. 19–21, 6 p.

    Google Scholar 

  • Ryback, L. and Mongillo, M., 2006, Geothermal sustainability–a review with identified research needs. Geothermal Resources Council Transaction, 30, 1083–1090.

    Google Scholar 

  • Schotanus, B.M., 2013, The Patuha geothermal system: a numerical model of a vapor-dominated system. Master Thesis, Utrecht University, Utrecht, 86 p.

    Google Scholar 

  • Simmons, S.F. and Christenson, B.W., 1994, Origin of calcite in a boiling geothermal system. American Journal of Science, 294, 361–400. https://doi.org/10.2475/ajs.294.3.361

    Article  Google Scholar 

  • Stefansson, V., 1997, Geothermal reinjection experience. Geothermics, 26, 99–139. https://doi.org/10.1016/S0375-6505(96)00035-1

    Article  Google Scholar 

  • Suda, K., Ueno, Y., Yoshizaki, M., Nakamura, H., Kurokawa, K., Nishiyama, E., Yoshino, K., Hongoh, Y., Kawachi, K., Omori, S., Yamada, K., Yoshida, N., and Maruyama, S., 2014, Origin of methane in serpentinite-hosted hydrothermal systems: the CH4-H2-H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth and Planetary Science Letters, 386, 112–125. https://doi.org/10.1016/j.epsl.2013.11.001

    Article  Google Scholar 

  • Sudarman, S., Pujianto, R., and Budiarjo, B., 1986, The Gunung Wayang Windu geothermal area in West Java. 15th Annual Convention of Indonesian Petroleum Association, Jakarta, Oct. 7, p. 141–153.

    Google Scholar 

  • Susanto, A., Suparka, E., Tsuchiya, N., Hirano, N., Kishita, A., and Kusumah, Y.I., 2011, Hydrothermal alteration study in Malabar area, northern part of the Wayang Windu geothermal field, Indonesia. 9th Asian Geothermal Symposium, Kagoshima, Nov. 7–9, p. 76–81.

    Google Scholar 

  • Taran, Y.A., Kliger, G.A., and Sevastianov, V.S., 2007, Carbon isotope effects in the open-system Fischer-Tropsch synthesis. Geochimica et Cosmochimica Acta, 71, 4474–4487. https://doi.org/10.1016/j.gca.2007.06.057

    Article  Google Scholar 

  • Taran, Y.A., Varley, N.R., Inguaggiato, S., and Cienfuegos, E., 2010, Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids, 10, 542–555. https://doi.org/10.1111/j.1468-8123.2010.00314.x

    Article  Google Scholar 

  • Verma, S.P. and Santoyo, E., 1997, New improved equations for Na-K, Na-Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology and Geothermal Research, 79, 9–23. https://doi.org/10.1016/S0377-0273(97)00024-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasi Prasetio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasetio, R., Daud, Y., Hutabarat, J. et al. Fluid geochemistry and isotope compositions to delineate physical processes in Wayang Windu geothermal reservoir, Indonesia. Geosci J 25, 507–523 (2021). https://doi.org/10.1007/s12303-020-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-020-0039-2

Keywords

Navigation