Skip to main content
Log in

Viewing the Personality Traits Through a Cerebellar Lens: a Focus on the Constructs of Novelty Seeking, Harm Avoidance, and Alexithymia

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiner IB, Tennen HA, Suls JM. Personality and social psychology, handbook of psychology. 2nd ed. USA: John Wiley & Sons; 2013.

    Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington: American Psychiatric Association; 2000.

    Google Scholar 

  3. Eysenck HJ, Eysenck MW. Personality and individual differences: a natural science approach. New York: Plenum; 1985.

    Book  Google Scholar 

  4. Gray JA. The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. 1st ed. Oxford: Oxford University Press; 1982.

    Google Scholar 

  5. Watson D, Wiese D, Vaidya J, Tellegen A. The two general activation systems of affect: structural evolutionary considerations, and psychobiological evidence. J Person Soc Psychol. 1999;76:820–38.

    Article  Google Scholar 

  6. Costa PT, McCrae RR. Normal personality assessment in clinical practice: the NEO personality inventory. Psych Assess. 1992;4:5–13.

    Article  Google Scholar 

  7. Cloninger CR. A systematic method for clinical description and classification of personality variants. Arch Gen Psychiatry. 1987;44:573–88.

    Article  CAS  PubMed  Google Scholar 

  8. Cloninger CR, Svrakic DM, Przybeck TR. A psychobiological model of temperament and character. Arch Gen Psychiatry. 1993;50:975–90.

    Article  CAS  PubMed  Google Scholar 

  9. Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H, et al. A multivariate analysis of 59 candidate genes in personality traits: the temperament and character inventory. Clin Genet. 2000;58:375–85.

    Article  CAS  PubMed  Google Scholar 

  10. Richter J, Brändström S. Personality disorder diagnosis by means of the temperament and character inventory. Compr Psychiatry. 2009;50:347–52.

    Article  PubMed  Google Scholar 

  11. Meyer B, Johnson SL, Carver CS. Exploring behavioral activation and inhibition sensitivities among college students at risk for bipolar spectrum symptomatology. J Psychopathol Behav Assess. 1999;21:275–92.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitchell JT, Nelson-Gray RO. Attention-deficit/hyperactivity disorder symptoms in adults: relationship to Gray’s behavioral approach system. Personal Individ Differ. 2006;40:749–60.

    Article  Google Scholar 

  13. Biederman J, Hirshfeld-Becker DR, Rosenbaum JF, Herot C, Friedman D, Snidman N, et al. Further evidence of association between behavioral inhibition and social anxiety in children. Am J Psychiatry. 2001;158:1673–9.

    Article  CAS  PubMed  Google Scholar 

  14. Muris P, Merckelbach H, Schmidt H, Gadet BB, Bogie N. Anxiety and depression as correlates of self-reported behavioural inhibition in normal adolescents. Behav Res Ther. 2001;39:1051–61.

    Article  CAS  PubMed  Google Scholar 

  15. Kim MS, Cho SS, Kang KW, Hwang JL, Kwon JS. Electrophysiological correlates of personality dimensions measured by temperament and character inventory. Psychiatry Clin Neurosci. 2002;56:631–5.

    Article  PubMed  Google Scholar 

  16. Limson R, Goldman D, Roy A, Lamparski D, Ravitz B, Adinoff B, et al. Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Arch Gen Psychiatry. 1991;48:437–41.

    Article  CAS  PubMed  Google Scholar 

  17. Canli T, Zhao Z, Desmond JE, Kang E, Gross J, Gabrieli JD. An fMRI study of personality influences on brain reactivity to emotional stimuli. Behav Neurosci. 2001;115:33–42.

    Article  CAS  PubMed  Google Scholar 

  18. Kumari V, Ffytche DH, Williams SC, Gray JA. Personality predicts brain responses to cognitive demands. J Neurosci. 2004;24:10636–41.

    Article  CAS  PubMed  Google Scholar 

  19. Sugiura M, Kawashima R, Nakagawa M, Okada K, Sato T, Goto R, et al. Correlation between human personality and neural activity incerebral cortex. Neuroimage. 2000;11:541–6.

    Article  CAS  PubMed  Google Scholar 

  20. Youn T, Lyoo IK, Kim JK, Park HJ, Ha KS, Lee DS, et al. Relationship between personality trait and regional cerebral glucose metabolism assessed with positron emissiontomography. Biol Psychol. 2002;60:109–20.

    Article  PubMed  Google Scholar 

  21. Montag C, Markett S, Basten U, Stelzel C, Fiebach C, Canli T, et al. Epistasis of the DRD2/ANKK1 TaqIa and the BDNFVal66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology. 2010;35:1860–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gjedde A, Kumakura Y, Cumming P, Linnet J, Møller A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci U S A. 2010;107:3870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR. Testing predictions from personality neuroscience. Brain structure and the big five. Psychol Sci. 2010;21:820–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gardini S, Cloninger CR, Venneri A. Individual differences inpersonality traits reflect structural variance in specific brain regions. Brain Res Bull. 2009;79:265–70.

    Article  PubMed  Google Scholar 

  25. Hu X, Erb M, Ackermann H, Martin JA, Grodd W, Reiterer SM. Voxel based morphometry studies of personality: issue of statistical model specification-effect of nuisance covariates. Neuroimage. 2011;54:1994–2005.

    Article  PubMed  Google Scholar 

  26. Yamasue H, Abe O, Suga M, Yamada H, Inoue H, Tochigi M, et al. Gender-common and specific neuroanatomical basis of human anxiety-related personality traits. Cereb Cortex. 2008;18:46–52.

    Article  PubMed  Google Scholar 

  27. Deckersbach T, Dougherty DD, Rauch SL. Functional imaging of mood and anxiety disorders. J Neuroimaging. 2006;16:1–10.

    Article  PubMed  Google Scholar 

  28. Gogtay N, Sporn A, Clasen LS, Nugent III TF, Greenstein D, Nicolson R, et al. Comparison of progressive cortical gray matter loss in childhood-onset schizophrenia with that in childhood-onset atypical psychoses. Arch Gen Psychiatry. 2004;61:17–22.

    Article  PubMed  Google Scholar 

  29. Cohen MX, Schoene-Bake JC, Elger CE, Weber B. Connectivity- based segregation of the human striatum predicts personality characteristics. Nat Neurosci. 2009;12:32–4.

    Article  CAS  PubMed  Google Scholar 

  30. Wittmann BC, Daw ND, Seymour B, Dolan RJ. Striatal activity underlies novelty-based choice in humans. Neuron. 2008;58:967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Westlye LT, Bjørnebekk A, Grydeland H, Fjell AM, Walhovd KB. Linking an anxiety-related personality trait to brain white matter microstructure: diffusion tensor imaging and harm avoidance. Arch Gen Psychiatry. 2011;68:369–77.

    Article  PubMed  Google Scholar 

  32. Knutson B, Momenan R, Rawlings RR, Fong GW, Hommer D. Negative association of neuroticism with brain volume ratio in healthy humans. Biol Psychiatry. 2001;50:685–90.

    Article  CAS  PubMed  Google Scholar 

  33. LeDoux J. Rethinking the emotional brain. Neuron. 2012;73:653–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laricchiuta D, Petrosini L, Piras F, Cutuli D, Macci E, Picerni E, et al. Linking novelty seeking and harm avoidance personality traits to basal ganglia: volumetry and mean diffusivity. Brain Struct Funct. 2014;219:793–803.

    Article  PubMed  Google Scholar 

  35. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  36. Paradiso S, Johnson DL, Andreasen NC, O’Leary DS, Watkins GL, Ponto LL, et al. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry. 1999;156:1618–29.

    Article  CAS  PubMed  Google Scholar 

  37. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  38. Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6:159–62.

    Article  PubMed  Google Scholar 

  39. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  40. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52:93–106.

    Article  PubMed  Google Scholar 

  42. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127:334–42.

    Article  PubMed  Google Scholar 

  43. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  CAS  PubMed  Google Scholar 

  44. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

    Article  CAS  PubMed  Google Scholar 

  45. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70.

    Article  PubMed  Google Scholar 

  47. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, et al. Decreased regional homogeneity in insula and cerebellum: a resting state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res. 2010;182:211–5.

    Article  PubMed  Google Scholar 

  49. De Bellis MD, Kuchibhatla M. Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol Psychiatry. 2006;60:697–703.

    Article  PubMed  Google Scholar 

  50. Mothersill O, Knee-Zaska C, Donohoe G. Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum; 2015

  51. Shinn AK, Baker JT, Lewandowski KE, Öngür D, Cohen BM. Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Front Hum Neurosci. 2015;9:134.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ivanov I, Murrough JW, Bansal R, Hao X, Peterson BS. Cerebellar morphology and the effects of stimulant medications in youths with attention deficit-hyperactivity disorder. Neuropsychopharmacology. 2014;39:718–26.

    Article  PubMed  Google Scholar 

  54. Eng GK, Sim K, Chen SH. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev. 2015;52:233–57.

    Article  PubMed  Google Scholar 

  55. Schutter DJ, van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8:28–34.

    Article  PubMed  Google Scholar 

  56. Laricchiuta D, Petrosini L, Piras F, Macci E, Cutuli D, Chiapponi C, et al. Linking novelty seeking and harm avoidance personality traits to cerebellar volumes. Hum Brain Mapp. 2014;35:285–96.

    Article  PubMed  Google Scholar 

  57. Picerni E, Petrosini L, Piras F, Laricchiuta D, Cutuli D, Chiapponi C, et al. New evidence for the cerebellar involvement in personality traits. Front Behav Neurosci. 2013;7:133.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schutter DJLG, Koolschijn PCMP, Peper JS, Crone EA. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS ONE. 2012;7:e37252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei L, Duan X, Yang Y, Liao W, Gao Q, Ding JR, et al. The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res. 2011;1419:68–75.

    Article  CAS  PubMed  Google Scholar 

  60. O’Gorman RL, Kumari V, Williams SC, Zelaya FO, Connor SE, Alsop DC, et al. Personality factors correlate with regional cerebral perfusion. Neuroimage. 2006;31:489–95.

    Article  PubMed  Google Scholar 

  61. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    CAS  PubMed  Google Scholar 

  62. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  63. Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703–13.

    Article  CAS  PubMed  Google Scholar 

  64. Bunzeck N, Düzel E. Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron. 2006;51:369–79.

    Article  CAS  PubMed  Google Scholar 

  65. Schmajuk NA, Gray JA, Lam YW. Latent inhibition: a neural network approach. J Exp Psychol Anim Behav Process. 1996;22:321–49.

    Article  CAS  PubMed  Google Scholar 

  66. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    CAS  PubMed  Google Scholar 

  67. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.

    Article  CAS  PubMed  Google Scholar 

  68. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science. 2011;334:385–9.

    Article  CAS  PubMed  Google Scholar 

  70. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2012;6:116.

    PubMed  Google Scholar 

  71. Mesulam MM. From sensation to cognition. Brain. 1998;121:1013–52.

    Article  PubMed  Google Scholar 

  72. Rochefort C, Lefort JM, Rondi-Reig L. The cerebellum: a new key structure in the navigation system. Front Neural Circuits. 2013;13:7–35.

    Google Scholar 

  73. Iglói K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, et al. interaction between hippocampus and cerebellum crus i in sequence-based but not place-based navigation. Cereb Cortex. 2015;25:4146–54.

    Article  PubMed  Google Scholar 

  74. Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. The what and how of observational learning. J Cogn Neurosci. 2007;19:1656–63.

    Article  PubMed  Google Scholar 

  75. Cutuli D, Rossi S, Burello L, Laricchiuta D, De Chiara V, Foti F, et al. Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin. Neurobiol Dis. 2011;42:9–20.

    Article  PubMed  Google Scholar 

  76. Foti F, Petrosini L, Cutuli D, Menghini D, Chiarotti F, Vicari S, et al. Explorative function in Williams syndrome analyzed through alarge-scale task with multiple rewards. Res Dev Disabil. 2011;32:972–85.

    Article  CAS  PubMed  Google Scholar 

  77. Petrosini L, Molinari M, Dell’Anna ME. Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur J Neurosci. 1996;8:1882–96.

    Article  CAS  PubMed  Google Scholar 

  78. Mandolesi L, Leggio MG, Spirito F, Petrosini L. Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge? Eur J Neurosci. 2003;18:2618–26.

    Article  CAS  PubMed  Google Scholar 

  79. Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Caston J, Chianale C, Delhaye-Bouchaud N, Mariani J. Role of the cerebellum in exploration behavior. Brain Res. 1998;808:232–7.

    Article  CAS  PubMed  Google Scholar 

  81. Fransen E, D’Hooge R, Van Camp G, Verhoye M, Sijbers J, Reyniers E, et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet. 1998;7:999–1009.

    Article  CAS  PubMed  Google Scholar 

  82. Rae C, Karmiloff-Smith A, Lee MA, Dixon RM, Grant J, Blamire AM, et al. Brain biochemistry in Williams syndrome: evidence for a role of the cerebellum in cognition? Neurology. 1998;51:33–40.

    Article  CAS  PubMed  Google Scholar 

  83. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49:655–64.

    Article  CAS  PubMed  Google Scholar 

  84. Menghini D, Di Paola M, Federico F, Vicari S, Petrosini L, Caltagirone C, et al. Relationship between brain abnormalities and cognitive profile in Williams syndrome. Behav Genet. 2011;41:394–402.

    Article  PubMed  Google Scholar 

  85. Cservenka A, Jones SA, Nagel BJ. Reduced cerebellar brain activity during reward processing in adolescent binge drinkers. Dev Cogn Neurosci; 2015

  86. Delgado MR. Reward-related responses in the human striatum. Ann N Y Acad Sci. 2007;1104:70–88.

    Article  PubMed  Google Scholar 

  87. Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci. 2008;1129:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996;6:228–36.

    Article  CAS  PubMed  Google Scholar 

  89. Wise RA. Rewards wanted: molecular mechanisms of motivation. Discov Med. 2004;4:180–6.

    PubMed  Google Scholar 

  90. Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxiousheat and unpleasant images. J Neurosci. 2011;31:3795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barlow DH, Chorpita BF, Turovsky J. Fear, panic, anxiety, and disorders of emotion. Nebr Symp Motiv. 1996;43:251–328.

    CAS  PubMed  Google Scholar 

  92. Benkelfat C, Bradwejn J, Meyer E, Ellenbogen M, Milot S, Gjedde A, et al. Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am J Psychiatry. 1995;152:1180–4.

    Article  CAS  PubMed  Google Scholar 

  93. Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. Neuroimage. 1999;9:563–71.

    Article  CAS  PubMed  Google Scholar 

  94. Reiman EM. The application of positron emission tomography to the study of normal and pathologic emotions. J Clin Psychiatry. 1997;58:4–12.

    PubMed  Google Scholar 

  95. Tillfors M, Furmark T, Marteinsdottir I, Fredrikson M. Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol Psychiatry. 2002;52:1113–9.

    Article  PubMed  Google Scholar 

  96. Rubio A, Van Oudenhove L, Pellissier S, Ly HG, Dupont P, de Micheaux HL, et al. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system - a fMRI study in healthy volunteers. Neuroimage. 2015;107:10–22.

    Article  PubMed  Google Scholar 

  97. Yang X, Kendrick KM, Wu Q, Chen T, Lama S, Cheng B, et al. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety. PLoS One. 2013;8:e63151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bardo MT, Donohew RL, Harrington NG. Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res. 1996;77:23–43.

    Article  CAS  PubMed  Google Scholar 

  99. Fresan A, Apiquian R, Nicolini H, Cervantes JJ. Temperament and character in violent schizophrenic patients. Schizophr Res. 2007;94:74–80.

    Article  CAS  PubMed  Google Scholar 

  100. Loftus ST, Garno JL, Jaeger J, Malhotra AK. Temperament and character dimensions in bipolar I disorder: a comparison to healthy controls. J Psychiatr Res. 2008;42:1131–6.

    Article  PubMed  Google Scholar 

  101. Kumaran D, Maguire EA. Novelty signals: a window into hippocampal information processing. Trends Cogn Sci. 2009;13:47–54.

    Article  PubMed  Google Scholar 

  102. Fernandez M, Pissiota A, Frans O, von Knorring L, Fischer H, Fredrikson M. Brain function in a patient with torture related post-traumatic stress disorder before and after fluoxetine treatment: a positron emission tomography provocation study. Neurosci Lett. 2001;297:101–4.

    Article  CAS  PubMed  Google Scholar 

  103. Bonne O, Gilboa A, Louzoun Y, Brandes D, Yona I, Lester H, et al. Resting regional cerebral perfusion in recent posttraumatic stress disorder. Biol Psychiatry. 2003;54:1077–86.

    Article  PubMed  Google Scholar 

  104. Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, et al. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiatry. 2011;69:857–66.

    Article  PubMed  Google Scholar 

  105. Zarei M, Mataix-Cols D, Heyman I, Hough M, Doherty J, Burge L, et al. Changes in gray matter volume and white matter microstructure in adolescents with obsessive-compulsive disorder. Biol Psychiatry. 2011;70:1083–90.

    Article  PubMed  Google Scholar 

  106. Cheng B, Huang X, Li S, Hu X, Luo Y, Wang X, et al. Gray matter alterations in post-traumatic stress disorder, obsessive-compulsive disorder, and social anxiety disorder. Front Behav Neurosci. 2015;9:219.

    PubMed  PubMed Central  Google Scholar 

  107. Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:1178–84.

    Article  PubMed  Google Scholar 

  108. Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19:317–31.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20:261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Volkow ND, Wang G-J, Fowler JS, Tomasi D, Telang F, Baler R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. BioEssays. 2010;32:748–55.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dalwani M, Sakai JT, Mikulich-Gilbertson SK, Tanabe J, Raymond K, McWilliams SK, et al. Reduced cortical gray matter volume in male adolescents with substance and conduct problems. Drug Alcohol Depend. 2011;118:295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Anderson CM, Maas LC, Frederick b, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31:1318–13126.

    Article  CAS  PubMed  Google Scholar 

  116. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    Article  CAS  PubMed  Google Scholar 

  117. Bischoff-Grethe A, Ivry RB, Grafton ST. Cerebellar involvement in response reassignment rather than attention. J Neurosci. 2002;22:546–53.

    CAS  PubMed  Google Scholar 

  118. Franken IH. Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:563–79.

    Article  PubMed  Google Scholar 

  119. Lisdahl KM, Thayer R, Squeglia LM, McQueeny TM, Tapert SF. Recent binge drinking predicts smaller cerebellar volumes in adolescents. Psychiatry Res. 2013;211:17–23.

    Article  PubMed  Google Scholar 

  120. Squeglia LM, Schweinsburg AD, Pulido C, Tapert SF. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res. 2011;35:1831–41.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schweinsburg AD, McQueeny T, Nagel BJ, Eyler LT, Tapert SF. A preliminary study of functional magnetic resonance imaging response during verbal encoding among adolescent binge drinkers. Alcohol. 2010;44:111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xiao L, Bechara A, Gong Q, Huang X, Li X, Xue G, et al. Abnormal Affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study. Psychol Addict Behav. 2013;27:443–54.

    Article  PubMed  Google Scholar 

  123. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sifneos PE. Short-term psychotherapy and emotional crisis. Cambridge: Harvard University Press; 1972.

    Google Scholar 

  125. Bagby RM, Parker JD, Taylor GJ. The twenty-item Toronto Alexithymia Scale--I. Item selection and cross-validation of the factor structure. J Psychosom Res. 1994;38:23–32.

    Article  CAS  PubMed  Google Scholar 

  126. Bagby RM, Taylor GJ, Parker JD. The Twenty-item Toronto Alexithymia Scale--II. Convergent, discriminant, and concurrent validity. J Psychosom Res. 1994;38:33–40.

    Article  CAS  PubMed  Google Scholar 

  127. Taylor GJ. Recent developments in alexithymia theory and research. Can J Psychiatry. 2000;45:134–42.

    CAS  PubMed  Google Scholar 

  128. Franz M, Schaefer R, Schneider C, Sitte W, Bachor J. Visual event-related potentials in subjects with alexithymia: modified processing of emotional aversive information? Am J Psychiatry. 2004;161:728–35.

    Article  PubMed  Google Scholar 

  129. Dorard G, Berthoz S, Haviland MG, Phan O, Corcos M, Bungener C. Multimethod alexithymia assessment in adolescents and young adults with a cannabis use disorder. Compr Psychiatry. 2008;49:585–92.

    Article  PubMed  Google Scholar 

  130. Honkalampi K, Hintikka J, Tanskanen A, Lehtonen J, Viinamäki H. Depression is strongly associated with alexithymia in the general population. J Psychosom Res. 2000;48:99–104.

    Article  CAS  PubMed  Google Scholar 

  131. Larsen JK, Brand N, Bermond B, Hijman R. Cognitive and emotional characteristics of alexithymia: a review of neurobiological studies. J Psychosom Res. 2003;54:533–41.

    Article  PubMed  Google Scholar 

  132. Taylor GJ, Bagby RM. New trends in alexithymia research. Psychother Psychosom. 2004;73:68–77.

    Article  PubMed  Google Scholar 

  133. Kano M, Hamaguchi T, Itoh M, Yanai K, Fukudo S. Correlation between alexithymia and hypersensitivity to visceral stimulation inhuman. Pain. 2007;132:252–63.

    Article  PubMed  Google Scholar 

  134. Pouga L, Berthoz S, de Gelder B, Grèzes J. Individual differences in socioaffective skills influence the neural bases of fear processing: the case of alexithymia. Hum Brain Mapp. 2010;31:1469–81.

    Article  PubMed  Google Scholar 

  135. Reker M, Ohrmann P, Rauch AV, Kugel H, Bauer J, Dannlowski U, et al. Individual differences in alexithymia and brain response to masked emotion faces. Cortex. 2010;46:658–67.

    Article  PubMed  Google Scholar 

  136. Moriguchi Y, Ohnishi T, Decety J, Hirakata M, Maeda M, Matsuda H, et al. The human mirror neuron system in a population with deficient self-awareness: an fMRI study in alexithymia. Hum Brain Mapp. 2009;30:2063–76.

    Article  PubMed  Google Scholar 

  137. Grabe HJ, Wittfeld K, Hegenscheid K, Hosten N, Lotze M, Janowitz D, et al. Alexithymia and brain gray matter volumes in a general population sample. Hum Brain Mapp. 2014;35:5932–45.

    Article  PubMed  Google Scholar 

  138. Moriguchi Y, Komaki G. Neuroimaging studies of alexithymia: physical, affective, and social perspectives. Biopsychosoc Med. 2013;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Laricchiuta D, Petrosini L, Picerni E, Cutuli D, Iorio M, Chiapponi C, et al. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Struct Funct. 2015;220:2275–87.

    Article  PubMed  Google Scholar 

  140. Dimitrova A, Kolb FP, Elles HG, Maschke M, Forsting M, Diener HC, et al. Cerebellar responses evoked by nociceptive leg withdrawal reflex as revealed by event-related FMRI. J Neurophysiol. 2003;90:1877–86.

    Article  CAS  PubMed  Google Scholar 

  141. Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, van den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11:233–45.

    Article  PubMed  Google Scholar 

  142. Imaizumi S, Mori K, Kiritani S, Kawashima R, Sugiura M, Fukuda H, et al. Vocal identification of speaker and emotion activates different brain regions. Neuroreport. 1997;8:2809–12.

    Article  CAS  PubMed  Google Scholar 

  143. Wildgruber D, Riecker A, Hertrich I, Erb M, Grodd W, Ethofer T, et al. Identification of emotional intonation evaluated by fMRI. Neuroimage. 2005;24:1233–41.

    Article  CAS  PubMed  Google Scholar 

  144. Boyke J, Driemeyer J, Gaser C, Büchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. 2008;28:7031–5.

    Article  CAS  PubMed  Google Scholar 

  145. Di Paola M, Caltagirone C, Petrosini L. Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe. Hum Brain Mapp. 2013;34:2707–14.

    Article  PubMed  Google Scholar 

  146. Pangelinan MM, Zhang G, VanMeter JW, Clark JE, Hatfield BD, Haufler AJ. Beyond age and gender: relationships between cortical andsubcortical brain volume and cognitive-motor abilities in school age children. Neuroimage. 2011;54:3093–100.

    Article  PubMed  Google Scholar 

  147. James CE, Oechslin MS, Van De Ville D, Hauert CA, Descloux C, Lazeyras F. Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct. 2014;219:353–66.

    Article  PubMed  Google Scholar 

  148. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, et al. Functional atlas of emotional faces processing: a voxel based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.

    PubMed  PubMed Central  Google Scholar 

  149. Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30:178–86.

    PubMed  PubMed Central  Google Scholar 

  150. Murphy FC, Nimmo-Smith I, Lawrence AD. Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3:207–33.

    Article  PubMed  Google Scholar 

  151. Andela CD, van der Werff SJ, Pannekoek JN, van den Berg SM, Meijer OC, van Buchem MA, et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case–control study. Eur J Endocrinol. 2013;169:811–9.

    Article  CAS  PubMed  Google Scholar 

  152. de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM, et al. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry. 2014;171:340–9.

    Article  PubMed  Google Scholar 

  153. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11:505–25.

    Article  PubMed  Google Scholar 

  154. Wang D, Buckner RL, Liu H. Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci. 2014;34:12341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  156. Anders S, Lotze M, Erb M, Grodd W. Birbaumer N Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum Brain Mapp. 2004;23:200–9.

    Article  PubMed  Google Scholar 

  157. Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.

    Article  PubMed  Google Scholar 

  158. Niedenthal PM, Barsalou LW, Krauth-Gruber S, Winkielman P, Ric F. Embodiment in attitudes, social perception, and emotion. Pers Soc Psychol Rev. 2005;9:184–211.

    Article  PubMed  Google Scholar 

  159. Varela FJ, Thompson E, Rosch E. The embodied mind: cognitive science and human experience. Cambridge: MIT Press; 1991.

    Google Scholar 

  160. Lakoff G, Johnson M. Philosophy in the flesh: the embodied mind and its challenge to western thought. New York: Basic Books; 1999.

    Google Scholar 

  161. Clark A. Being there. Putting brain, body and world together again. Cambridge: MIT Press; 1997.

    Google Scholar 

  162. Hurley SL. Consciousness in action. Cambridge: Harvard University Press; 1998.

    Google Scholar 

  163. Gallagher S. How the body shapes the mind. New York: Clarendon Press; 2005.

    Book  Google Scholar 

  164. Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351:1413–20.

    Article  CAS  PubMed  Google Scholar 

  165. Fuchs T, Koch SC. Embodied affectivity: on moving and being moved. Front Psychol. 2014;5:508.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Duddu V, Isaac MK, Chaturvedi SK. Alexithymia in somatoform and depressive disorders. J Psychosom Res. 2003;54:435–8.

    Article  CAS  PubMed  Google Scholar 

  167. Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.

    Article  CAS  PubMed  Google Scholar 

  168. Cisek P, Pastor-Bernier A. On the challenges and mechanisms of embodied decisions. Philos Trans R Soc Lond B Biol Sci. 2014;369:1655.

    Article  Google Scholar 

  169. Friston K, Schwartenbeck P, FitzGerald T, Moutoussis M, Behrens T, Dolan RJ. The anatomy of choice: dopamine and decision-making. Philos Trans R Soc Lond B Biol Sci. 2014;369:1655.

    Article  Google Scholar 

  170. Critchley HD, Mathias CJ, Josephs O, O’Doherty J, Zanini S, Dewar BK, et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:2139–52.

    Article  PubMed  Google Scholar 

  171. Lane RD, Ahern GL, Schwartz GE, Kaszniak AW. Is alexithymia the emotional equivalent of blindsight? Biol Psychiatry. 1997;42:834–44.

    Article  CAS  PubMed  Google Scholar 

  172. Pezzulo G, Castelfranchi C. The symbol detachment problem. Cogn Process. 2007;8:115–31.

    Article  PubMed  Google Scholar 

  173. Pezzulo G, Castelfranchi C. Intentional action: from anticipation to goal-directed behavior. Psychol Res. 2009;73:437–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrosini, L., Cutuli, D., Picerni, E. et al. Viewing the Personality Traits Through a Cerebellar Lens: a Focus on the Constructs of Novelty Seeking, Harm Avoidance, and Alexithymia. Cerebellum 16, 178–190 (2017). https://doi.org/10.1007/s12311-015-0754-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0754-9

Keywords

Navigation