Skip to main content
Log in

Paediatric Metabolic Bone Disease: A Lifetime Ahead

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Beyond its functions in locomotion, support and protection of vital organs, bone also interacts with other organs to adjust mineral balance in response to physiological requirements. Bone remodelling is a continuous process of bone resorption and formation for the purpose of maintaining healthy bone mass and growth. Any derangement in this process can cause bone disorders with important clinical consequences. The most prominent features of bone diseases in children include early bone fractures, deformities and pain, which can persist and worsen later in life if an accurate and timely diagnosis is not achieved. Biochemical and genetic testing usually help to discriminate the aetiology of the disease, which determines the subsequent management and follow-up. This review focuses on major genetic metabolic bone diseases in children, their pathophysiological mechanisms, the potential therapeutic interventions and the possible consequences in adulthood of the disease and its treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allgrove J. Physiology of calcium, phosphate, magnesium and vitamin D. Endocr Dev. 2015;28:7–32.

    Article  CAS  PubMed  Google Scholar 

  2. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  3. Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23–30.

    Article  CAS  PubMed  Google Scholar 

  4. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    Article  CAS  PubMed  Google Scholar 

  5. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camozzi V, Tossi A, Simoni E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30:13–7.

    Article  CAS  PubMed  Google Scholar 

  7. Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  8. Bowden SA, Akusoba CI, Hayes JR, Mahan JD. Biochemical markers of bone turnover in children with clinical bone fragility. J Pediatr Endocrinol Metab. 2016;29:715–22.

    Article  CAS  PubMed  Google Scholar 

  9. Boyce AM, Gafni RI. Approach to the child with fractures. J Clin Endocrinol Metab. 2011;96:1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arseni L, Lombardi A, Orioli D. From structure to phenotype: impact of collagen alterations on human health. Int J Mol Sci. 2018;19:1407.

    Article  PubMed Central  CAS  Google Scholar 

  11. Marini JC, Forlino A, Bachinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.

    Article  PubMed  Google Scholar 

  12. Folkestad L, Hald JD, Ersboll AK, et al. Fracture rates and fracture sites in patients with osteogenesis imperfecta: a nationwide register-based cohort study. J Bone Miner Res. 2017;32:125–34.

    Article  PubMed  Google Scholar 

  13. Nguyen VH. School-based exercise interventions effectively increase bone mineralization in children and adolescents. Osteoporos Sarcopenia. 2018;4:39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Folkestad L, Hald JD, Canudas-Romo V, et al. Mortality and causes of death in patients with osteogenesis imperfecta: a register-based nationwide cohort study. J Bone Miner Res. 2016;31:2159–66.

    Article  CAS  PubMed  Google Scholar 

  15. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.

    Article  CAS  PubMed  Google Scholar 

  16. Hoyer-Kuhn H, Franklin J, Allo G, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect—a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16:24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res. 2015;30:929–33.

    Article  CAS  PubMed  Google Scholar 

  18. Shi CG, Zhang Y, Yuan W. Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta: a systematic review and meta-analysis. Am J Ther. 2016;23:e894–904.

    Article  PubMed  Google Scholar 

  19. Hennedige AA, Jayasinghe J, Khajeh J, Macfarlane TV. Systematic review on the incidence of bisphosphonate related osteonecrosis of the jaw in children diagnosed with osteogenesis imperfecta. J Oral Maxillofac Res. 2013;4:e1.

    Article  PubMed  Google Scholar 

  20. Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20:670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. SESEP Laboratory. The tissue nonspecific alkaline phosphatase gene mutations database. 2019. http://www.sesep.uvsq.fr/03_hypo_mutations.php. Accessed 12 Mar 2019.

  22. Garcia-Fontana C, Villa-Suarez JM, Andujar-Vera F, et al. Epidemiological, clinical and genetic study of hypophosphatasia in a Spanish population: identification of two novel mutations in the Alpl gene. Sci Rep. 2019;9:9569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Berkseth KE, Tebben PJ, Drake MT, et al. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone. 2013;54:21–7.

    Article  CAS  PubMed  Google Scholar 

  24. Phillips D, Case LE, Griffin D, et al. Physical therapy management of infants and children with hypophosphatasia. Mol Genet Metab. 2016;119:14–9.

    Article  CAS  PubMed  Google Scholar 

  25. Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone. 2015;75:229–39.

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharyya T, Jha S, Wang H, Kastner DL, Remmers EF. Hypophosphatasia and the risk of atypical femur fractures: a case-control study. BMC Musculoskelet Disord. 2016;17:332.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peris P, González-Roca E, Rodríguez-García SC, et al. Incidence of mutations in the ALPL, GGPS1, and CYP1A1 genes in patients with atypical femoral fractures. JBMR Plus. 2019;3:29–36.

    Article  CAS  PubMed  Google Scholar 

  28. Guanabens N, Blanch J, Martinez-Diaz-Guerra G, Munoz Torres M. Identification of hypophosphatasia in a clinical setting: clinical manifestations and diagnostic recommendations in adult patients. Med Clin (Barc). 2018;150:75–9.

    Article  Google Scholar 

  29. Whyte MP. Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12:233–46.

    Article  CAS  PubMed  Google Scholar 

  30. Whyte MP, Greenberg CR, Salman NJ, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366:904–13.

    Article  CAS  PubMed  Google Scholar 

  31. Kishnani PS, Rockman-Greenberg C, Rauch F, et al. Five-year efficacy and safety of asfotase alfa therapy for adults and adolescents with hypophosphatasia. Bone. 2019;121:149–62.

    Article  CAS  PubMed  Google Scholar 

  32. Hakami Y, Khan A. Hypoparathyroidism. Front Horm Res. 2019;51:109–26.

    Article  CAS  PubMed  Google Scholar 

  33. Shaw NJ. A practical approach to hypocalcaemia in children. Endocr Dev. 2015;28:84–100.

    Article  CAS  PubMed  Google Scholar 

  34. Eom TH, Kim YH, Kim JM. Recurrent seizures, mental retardation and extensive brain calcinosis related to delayed diagnosis of hypoparathyroidism in an adolescent boy. J Clin Neurosci. 2015;22:894–6.

    Article  PubMed  Google Scholar 

  35. Bilezikian JP, Khan A, Potts JT Jr, et al. Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J Bone Miner Res. 2011;26:2317–37.

    Article  CAS  PubMed  Google Scholar 

  36. Bilezikian JP, Brandi ML, Cusano NE, et al. Management of hypoparathyroidism: present and future. J Clin Endocrinol Metab. 2016;101:2313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitchell DM, Regan S, Cooley MR, et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012;97:4507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubin MR, Dempster DW, Zhou H, et al. Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res. 2008;23:2018–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cusano NE, Nishiyama KK, Zhang C, et al. Noninvasive assessment of skeletal microstructure and estimated bone strength in hypoparathyroidism. J Bone Miner Res. 2016;31:308–16.

    Article  PubMed  Google Scholar 

  40. Marcucci G, Della Pepa G, Brandi ML. Drug safety evaluation of parathyroid hormone for hypocalcemia in patients with hypoparathyroidism. Expert Opin Drug Saf. 2017;16:617–25.

    Article  CAS  PubMed  Google Scholar 

  41. Winer KK, Kelly A, Johns A, et al. Long-term parathyroid hormone 1–34 replacement therapy in children with hypoparathyroidism. J Pediatr. 2018;203(391–99):e1.

    Google Scholar 

  42. Vokes TJ, Mannstadt M, Levine MA, et al. Recombinant human parathyroid hormone effect on health-related quality of life in adults with chronic hypoparathyroidism. J Clin Endocrinol Metab. 2018;103:722–31.

    Article  PubMed  Google Scholar 

  43. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381–8.

    Article  PubMed  Google Scholar 

  44. Chesher D, Oddy M, Darbar U, et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis. 2018;41:865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skrinar A, Dvorak-Ewell M, Evins A, et al. The lifelong impact of X-linked hypophosphatemia: results from a burden of disease survey. J Endocr Soc. 2019;3:1321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Connor J, Olear EA, Insogna KL, et al. Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab. 2015;100:3625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carpenter TO, Olear EA, Zhang JH, et al. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2014;99:3103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Insogna KL, Briot K, Imel EA, et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res. 2018;33:1383–93.

    Article  CAS  PubMed  Google Scholar 

  49. Whyte MP, Carpenter TO, Gottesman GS, et al. Efficacy and safety of burosumab in children aged 1–4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7:189–99.

    Article  PubMed  Google Scholar 

  50. Portale AA, Carpenter TO, Brandi ML, et al. Continued beneficial effects of burosumab in adults with X-linked hypophosphatemia: results from a 24-week treatment continuation period after a 24-week double-blind placebo-controlled period. Calcif Tissue Int. 2019;105:271–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This supplement has been funded by Kyowa Kirin.

Funding

Kyowa Kirin organized the scientific meeting and contributed to the financing of the publication of the opinion of the speakers presented at that meeting (Madrid, November 2018).

Medical Writing, Editorial, and Other Assistance

The author would like to thank Anabel Herrero, PhD for providing medical writing assistance on behalf of Springer Healthcare. Kyowa Kirin funded the writing assistance provided by Springer Healthcare Ibérica S.L. Ruth Blaikie provided the copy editing of this manuscript.

Authorship

The named author meets the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, takes responsibility for the integrity of the work as a whole, and has given his approval for this version to be published.

Disclosures

Carlos Gómez-Alonso declares his participation in counselling and teaching activities, and clinical trials for Amgen, Lilly, MSD, FAES, Alexion, Kyowa Kirin, Italfármaco, Gebro.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gómez-Alonso.

Additional information

Enhanced Digital Features

To view enhanced digital features for this article go to https://doi.org/10.6084/m9.figshare.10327655.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Alonso, C. Paediatric Metabolic Bone Disease: A Lifetime Ahead. Adv Ther 37 (Suppl 2), 38–46 (2020). https://doi.org/10.1007/s12325-019-01174-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-019-01174-3

Keywords

Navigation