Skip to main content
Log in

Advances in High-Pressure Processing of Fish Muscles

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The application of high pressure for processing fish muscles has showed a great potential on improving the physicochemical, microbial and sensory quality of fish muscles. High pressure results in the inactivation of micro-organisms and autolytic enzymes and lead to an extension of fish muscles shelf life. High pressure inhibits the formation of putrefactive compounds and maintains the hardness of fish muscles, resulting in higher sensory quality compared to untreated muscle over storage time. However, the discolouration, cooked appearance and lipid oxidation are the drawbacks that could limit the application of high pressure on fish muscles. Besides, pressure-induced gelling and high-pressure freezing/thawing of fish muscles are the main areas being investigated intensively to obtain the benefits of high-pressure processing on fish muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfnes F, Guttormsen AG, Steine G, Kolstad K (2006) Consumers’ willingness to pay for the color of salmon: a choice experiment with real economic incentives. Am J Agric Econ 88(4):1050–1061

    Google Scholar 

  2. Alizadeh E, Chapleau N, de Lamballerie M, Le-Bail A (2007) Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innov Food Sci Emerg Technol 8(4):493–499

    Google Scholar 

  3. Amanatidou A, Schlüter O, Lemkau K, Gorris LGM, Smid EJ, Knorr D (2000) Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innov Food Sci Emerg Technol 1(2):87–98

    CAS  Google Scholar 

  4. Angsupanich K, Ledward DA (1998) High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem 63(1):39–50

    CAS  Google Scholar 

  5. Angsupanich K, Ledward DA (1999) Effects of high pressure on textural characteristics of cod (Gadus morhua) muscle. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Berlin, pp 405–408

    Google Scholar 

  6. Arias C (2009) Chilled and frozen raw fish. In: Fernandes R (ed) Microbiology handbook fish and seafood. Leatherhead Publishing, Cambridge, pp 1–25

    Google Scholar 

  7. Ariño A, Beltrán JA, Roncalés P (2003) FISH dietary importance of fish and shellfish. In: Benjamin C (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 2471–2478

    Google Scholar 

  8. Ashie INA, Lanier TC (1999) High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase. J Food Sci 64(4):704–708

    CAS  Google Scholar 

  9. Ashie INA, Simpson BK (1996) Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Res Int 29(5–6):569–575

    CAS  Google Scholar 

  10. Ashie INA, Simpson BK, Ramaswamy HS (1997) Changes in texture and microstructure of pressure-treated fish muscle tissue during chilled storage. J Muscle Food 8(1):13–32

    Google Scholar 

  11. Aubourg SP, Torres JA, Saraiva JA, Guerra-Rodríguez E, Vázquez M (2013) Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT - Food Science and Technology 53(1):100–106

  12. Aurelio L-M, Barry GS, Gustavo VB-C, Enrique P (2007) High-pressure treatment in food preservation handbook of food preservation, 2nd edn. CRC Press, Boca Raton, pp 815–853

    Google Scholar 

  13. Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595(1–2):235–249

    CAS  Google Scholar 

  14. Briones LS, Reyes JE, Tabilo-Munizaga GE, Pérez-Won MO (2010) Microbial shelf-life extension of chilled Coho salmon (Oncorhynchus kisutch) and abalone (Haliotis rufescens) by high hydrostatic pressure treatment. Food Control 21(11):1530–1535

    Google Scholar 

  15. Brutti A, Rovere P, Cavallero S, D’Amelio S, Danesi P, Arcangeli G (2010) Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control 21(3):331–333

    Google Scholar 

  16. Buckow R (2006) Pressure and temperature effects on the enzymatic conversion of biopolymers. Technische Universität Berlin Berlin

  17. Buckow R, Bull M (2013) Advanced food preservation technologies. Microbiol Aust 34(2):108–111

    Google Scholar 

  18. Buckow R, Sikes A, Tume R (2013) Effect of high pressure on physicochemical properties of meat. Crit Rev Food Sci Nutr 53(7):770–786

    Google Scholar 

  19. Buckow R, Truong BQ, Versteeg C (2010) Bovine cathepsin D activity under high pressure. Food Chem 120(2):474–481

    CAS  Google Scholar 

  20. Campus M, Addis MF, Cappuccinelli R, Porcu MC, Pretti L, Tedde V, Secchi N, Stara G, Roggio T (2010) Stress relaxation behaviour and structural changes of muscle tissues from Gilthead Sea Bream (Sparus aurata L.) following high pressure treatment. J Food Eng 96(2):192–198

    CAS  Google Scholar 

  21. Chéret R, Chapleau N, Delbarre-Ladrat C, Verrez-Bagnis V, Lamballerie MD (2005) Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. J Food Sci 70(8):e477–e483

    Google Scholar 

  22. Chéret R, Delbarre-Ladrat C, Lamballerie-Anton MD, Verrez-Bagnis V (2007) Calpain and cathepsin activities in post mortem fish and meat muscles. Food Chem 101(4):1474–1479

    Google Scholar 

  23. Chéret R, Hernández-Andrés A, Delbarre-Ladrat C, De Lamballerie M, Verrez-Bagnis V (2006) Proteins and proteolytic activity changes during refrigerated storage in sea bass (Dicentrarchus labrax L.) muscle after high-pressure treatment. Eur Food Res Technol 222(5–6):527–535

    Google Scholar 

  24. Chevalier D, Le Bail A, Chourot JM, Chantreau P (1999) High pressure thawing of fish (Whiting): influence of the process parameters on drip losses. LWT - Food Sci Technol 32(1):25–31

    CAS  Google Scholar 

  25. Chevalier D, Le Bail A, Ghoul M (2001) Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Res Int 34(5):425–429

    CAS  Google Scholar 

  26. Chevalier D, Sequeira-Munoz A, Le Bail A, Simpson BK, Ghoul M (2000) Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophthalmus maximus): evaluation of pressure shift freezing vs. air-blast freezing. Innov Food Sci Emerg Technol 1(3):193–201

    Google Scholar 

  27. Chevalier D, Sequeira-Munoz A, Le Bail A, Simpson BK, Ghoul M (2000) Effect of pressure shift freezing, air-blast freezing and storage on some biochemical and physical properties of turbot (Scophthalmus maximus). LWT - Food Sci Technol 33(8):570–577

    CAS  Google Scholar 

  28. Chevalier D, Sequeira-Munoz A, Le Bail A, Simpson BK, Ghoul M (2001) Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophthalmus maximus): evaluation of pressure shift freezing vs. air-blast freezing. Innov Food Sci Emerg Technol 1(3):193–201

    Google Scholar 

  29. Dalgaard P (2003) FISH spoilage of seafood. In: Benjamin C (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 2462–2471

    Google Scholar 

  30. Dong FM, Cook AR, Herwig RP (2003) High hydrostatic pressure treatment of finfish to inactivate Anisakis simplex. J Food Prot 66(10):1924–1926

    Google Scholar 

  31. Erkan N, Üretener G, Alpas H (2010) Effect of high pressure (HP) on the quality and shelf life of red mullet (Mullus surmelutus). Innov Food Sci Emerg Technol 11(2):259–264

    CAS  Google Scholar 

  32. Farkas DF, Hoover DG (2000) High pressure processing. Food Sci 65(Suppl 8):47–64

    Google Scholar 

  33. Folkestad A, Wold JP, Rørvik K-A, Tschudi J, Haugholt KH, Kolstad K, Mørkøre T (2008) Rapid and non-invasive measurements of fat and pigment concentrations in live and slaughtered Atlantic salmon (Salmo salar L.). Aquaculture 280(1–4):129–135

    CAS  Google Scholar 

  34. Forsberg OI, Guttormsen AG (2006) A pigmentation model for farmed Atlantic salmon: nonlinear regression analysis of published experimental data. Aquaculture 253(1–4):415–420

    Google Scholar 

  35. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish muscles. Int J Food Microbiol 33(1):121–137

    CAS  Google Scholar 

  36. Halldorsdottir SM, Kristinsson HG, Sveinsdottir H, Thorkelsson G, Hamaguchi PY (2013) The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein. Food Chem 141(2):914–919

    CAS  Google Scholar 

  37. Heinz V, Buckow R (2010) Food preservation by high pressure. J Verbr Lebensm 5(1):73–81

    Google Scholar 

  38. Hite BH (1899) The effect of pressure in the preservation of milk. W Va Univ Agric Exp Stn Bull 58:15–35

    Google Scholar 

  39. Hultin HO (1994) Oxidation of lipids in seafoods. In: Shahidi F, Botta JR (eds) Seafoods: chemistry, processing technology and quality. Springer, US, pp 49–74

    Google Scholar 

  40. Hurtado JL, Montero P, Borderías AJ (2000) Extension of shelf life of chilled hake (Merluccius capensis) by high pressure. Food Sci Technol Int 6(3):243–249

    Google Scholar 

  41. Hwang J-S, Lai K-M, Hsu K-C (2007) Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting. Food Chem 104(2):746–753

    CAS  Google Scholar 

  42. Iso S-I, Mizuno H, Ogawa H, Mochizuki Y, Iso N (1994) Differential scanning calorimetry of pressurized fish meat. Fish Sci 60(1):127–128

    Google Scholar 

  43. Iwasaki T, Washio M, Yamamoto K, Nakamura K (2005) Rheological and morphological comparison of thermal and hydrostatic pressure-induced filamentous myosin gels. J Food Sci 70(7):e432–e436

    CAS  Google Scholar 

  44. Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  45. Jiménez Colmenero F (2002) Muscle protein gelation by combined use of high pressure/temperature. Trends Food Sci Technol 13(1):22–30

    Google Scholar 

  46. Kamalakanth CK, Ginson J, Bindu J, Venkateswarlu R, Das S, Chauhan OP, Gopal TKS (2011) Effect of high pressure on K-value, microbial and sensory characteristics of yellowfin tuna (Thunnus albacares) chunks in EVOH films during chill storage. Innov Food Sci Emerg Technol 12(4):451–455

    Google Scholar 

  47. Karim NU, Kennedy T, Linton M, Watson S, Gault N, Patterson MF (2011) Effect of high pressure processing on the quality of herring (Clupea harengus) and haddock (Melanogrammus aeglefinus) stored on ice. Food Control 22(3–4):476–484

    Google Scholar 

  48. Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta 1764(3):619–631

    CAS  Google Scholar 

  49. Ko W-C, Hsu K-C (2001) Changes in K value and microorganisms of tilapia fillet during storage at high-pressure. Norm Temp J Food Prot 64(1):94–98

    CAS  Google Scholar 

  50. Ko W-C, Jao C-L, Hwang J-S, Hsu K-C (2006) Effect of high-pressure treatment on processing quality of tilapia meat fillets. J Food Eng 77(4):1007–1011

    Google Scholar 

  51. Ko W-C, Tanaka M, Nagashima Y, Taguchi T, Amano K (1991) Effect of pressure treatment on actomyosin ATPases from flying fish and sardine muscles. J Food Sci 56(2):338–340

    CAS  Google Scholar 

  52. Ko WC (1996) Effect of high pressure on gelation of meat paste and inactivation of actomyosin Ca-ATPase prepared from milkfish. Fish Sci 62(1):101–104

    CAS  Google Scholar 

  53. LeBail A, Chevalier D, Mussa DM, Ghoul M (2002) High pressure freezing and thawing of foods: a review. Int J Refrig 25(5):504–513

    CAS  Google Scholar 

  54. Li T, Li J, Hu W, Zhang X, Li X, Zhao J (2012) Shelf-life extension of crucian carp (Carassius auratus) using natural preservatives during chilled storage. Food Chem 135(1):140–145

    CAS  Google Scholar 

  55. Liang Y, Hultin HO (2005) Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids. J Agric Food Chem 53(8):3008–3016

    CAS  Google Scholar 

  56. Liu D, Zeng X-A, Sun D-W (2013) NIR spectroscopy and imaging techniques for evaluation of fish quality—a review. Appl Spectrosc Rev 48(8):609–628

    CAS  Google Scholar 

  57. Love RM (1997) Biochemical dynamics and the quality of fresh and frozen fish. In: Hall GM (ed) Fish processing technology. Springer, US, pp 1–31

    Google Scholar 

  58. Maqsood S, Benjakul S, Kamal-Eldin A (2012) Haemoglobin-mediated lipid oxidation in the fish muscle: a review. Trends Food Sci Technol 28(1):33–43

    CAS  Google Scholar 

  59. Martino MN, Otero L, Sanz PD, Zaritzky NE (1998) Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci 50(3):303–313

    CAS  Google Scholar 

  60. Matějková K, Křížek M, Vácha F, Dadáková E (2013) Effect of high-pressure treatment on biogenic amines formation in vacuum-packed trout flesh (Oncorhynchus mykiss). Food Chem 137(1–4):31–36

    Google Scholar 

  61. Matser AM, Stegeman D, Kals J, Bartels PV (2000) Effects of high pressure on colour and texture of fish. High Press Res 19(1–6):109–115

    Google Scholar 

  62. Molina-Garcia AD, Sanz PD (2002) Anisakis simplex larva killed by high-hydrostatic-pressure processing. J Food Prot 65(2):383–388

    CAS  Google Scholar 

  63. Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins Struct Funct Genet 24(1):81–91

    CAS  Google Scholar 

  64. Murchie LW, Cruz-Romero M, Kerry JP, Linton M, Patterson MF, Smiddy M, Kelly AL (2005) High pressure processing of shellfish: a review of microbiological and other quality aspects. Innov Food Sci Emerg Technol 6(3):257–270

    Google Scholar 

  65. Offer G, Trinick J (1983) On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci 8(4):245–281

    CAS  Google Scholar 

  66. Ohshima T, Ushio H, Koizumi C (1993) High-pressure processing of fish and fish muscles. Trends Food Sci Technol 4(11):370–375

    CAS  Google Scholar 

  67. Ojagh SM, Núñez-Flores R, López-Caballero ME, Montero MP, Gómez-Guillén MC (2011) Lessening of high-pressure-induced changes in Atlantic salmon muscle by the combined use of a fish gelatin–lignin film. Food Chem 125(2):595–606

    CAS  Google Scholar 

  68. Okazaki E, Fukuda Y (1996) Effect of water-soluble protein on pressure-induced gelation of Alaska pollack surimi. In: Hayashi R, Balny C (eds) Progress in biotechnology, vol 13. Elsevier, Amsterdam, pp 363–368

  69. Ortea I, Rodríguez A, Tabilo-Munizaga G, Pérez-Won M, Aubourg SP (2010) Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. Eur Food Res Technol 230(6):925–934

    CAS  Google Scholar 

  70. Patterson MF, Ledward DA, Leadley C, Rogers N (2011) High pressure processing food processing handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken, pp 179–204

    Google Scholar 

  71. Pérez-Mateos M, Lourenço H, Montero P, Borderías AJ (1997) Rheological and biochemical characteristics of high-pressure- and heat-induced gels from blue whiting (Micromesistius poutassou) muscle proteins. J Agric Food Chem 45(1):44–49

    Google Scholar 

  72. Pérez-Mateos M, Montero P (1997) High-pressure-induced gel of sardine (Sardina pilchardus) washed mince as affected by pressure-time-temperature. J Food Sci 62(6):1183–1188

    Google Scholar 

  73. Pérez-Mateos M, Solas T, Montero P (2002) Carrageenans and alginate effects on properties of combined pressure and temperature in fish mince gels. Food Hydrocoll 16(3):225–233

    Google Scholar 

  74. Qiu C, Xia W, Jiang Q (2013) Effect of high hydrostatic pressure (HHP) on myofibril-bound serine proteinases and myofibrillar protein in silver carp (Hypophthalmichthys molitrix). Food Res Int 52(1):199–205

    CAS  Google Scholar 

  75. Qiu C, Xia W, Jiang Q (2013) High hydrostatic pressure inactivation kinetics of the endogenous lipoxygenase in crude silver carp (Hypophthalmichthys molitrix) extract. Int J Food Sci Technol 48(6):1142–1147

    CAS  Google Scholar 

  76. Ramaswamy HS, Zaman SU, Smith JP (2008) High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. J Food Eng 87(1):99–106

    Google Scholar 

  77. Ramirez-Suarez JC, Morrissey MT (2006) Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innov Food Sci Emerg Technol 7(1–2):19–27

    CAS  Google Scholar 

  78. Ramirez-Suarez JC, Morrissey MT (2006) High hydrostatic pressure and heat treatment effects on physicochemical characteristics of albacore tuna (Thunnus alalunga) minced muscle. J Aquat Food Prod Technol 15(1):5–17

    CAS  Google Scholar 

  79. Refsgaard HHF, Brockhoff PMB, Jensen B (2000) Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage. J Agric Food Chem 48(8):3280–3285

    CAS  Google Scholar 

  80. Saha MR, Ross NW, Gill TA, Olsen RE, Lall SP (2005) Development of a method to assess binding of astaxanthin to Atlantic salmon Salmo salar L. muscle proteins. Aquac Res 36(4):336–343

    CAS  Google Scholar 

  81. San Martín MF, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by high hydrostatic pressure. Crit Rev Food Sci Nutr 42(6):627–645

    Google Scholar 

  82. Sareevoravitkul R, Simpson BK, Ramaswamy HS (1996) Comparative properties of bluefish (Pomatomus saltatrix) gels formulated by high hydrostatic pressure and heat. J Aquat Food Prod Technol 5(3):65–79

    Google Scholar 

  83. Schubring R, Meyer C, Schlüter O, Boguslawski S, Knorr D (2003) Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innov Food Sci Emerg Technol 4(3):257–267

    Google Scholar 

  84. Sequeira-Munoz A, Chevalier D, LeBail A, Ramaswamy HS, Simpson BK (2006) Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innov Food Sci Emerg Technol 7(1–2):13–18

    CAS  Google Scholar 

  85. Sevenich R, Bark F, Crews C, Anderson W, Pye C, Riddellova K, Knorr D (2013) Effect of high pressure thermal sterilization on the formation of food processing contaminants. Innov Food Sci Emerg Technol 20:42–50

    CAS  Google Scholar 

  86. Shahidi F (1994) Seafood proteins and preparation of protein concentrates. In: Shahidi F, Botta JR (eds) Seafoods: chemistry, processing technology and quality. Blackie Academic and Professional, New York, pp 3–10

    Google Scholar 

  87. Shimidzu N, Goto M, Miki W (1996) Carotenoids as singlet oxygen quenchers in marine organisms. Fish Sci 62(1):134–137

    CAS  Google Scholar 

  88. Sikorski ZE (1994) The contents of protein and other nitrogenous compounds in marine animals. In: Sikorski ZE, Pan BS, Shahidi F (eds) Seafood proteins. Chapman & Hall, New York, pp 6–12

    Google Scholar 

  89. Suzuki A (2002) High pressure-processed foods in Japan and the world. 19:365–374

  90. Tauscher B (1995) Pasteurization of food by hydrostatic high pressure chemical aspects. Z Lebensm Unters Forsch 200:3–13

    CAS  Google Scholar 

  91. Teixeira B, Fidalgo L, Mendes R, Costa G, Cordeiro C, Marques A, Saraiva JA, Nunes ML (2013) Changes of enzymes activity and protein profiles caused by high-pressure processing in sea bass (Dicentrarchus labrax) fillets. J Agric Food Chem 61(11):2851–2860

    CAS  Google Scholar 

  92. Tintchev F, Kuhlmann U, Wackerbarth H, Töpfl S, Heinz V, Knorr D, Hildebrandt P (2009) Redox processes in pressurised smoked salmon studied by resonance raman spectroscopy. Food Chem 112(2):482–486

    CAS  Google Scholar 

  93. Tironi V, de Lamballerie M, Le-Bail A (2010) Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innov Food Sci Emerg Technol 11(4):565–573

    CAS  Google Scholar 

  94. Tironi V, LeBail A, De Lamballerie M (2007) Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. J Food Sci 72(7):C381–C387

    CAS  Google Scholar 

  95. Uresti RM, Velazquez G, Vázquez M, Ramírez JA, Torres JA (2005) Effect of sugars and polyols on the functional and mechanical properties of pressure-treated arrow tooth flounder (Atheresthes stomias) proteins. Food Hydrocoll 19(6):964–973

    CAS  Google Scholar 

  96. Uresti RM, Velazquez G, Vázquez M, Ramírez JA, Torres JA (2006) Effects of combining microbial transglutaminase and high pressure processing treatments on the mechanical properties of heat-induced gels prepared from arrowtooth flounder (Atheresthes stomias). Food Chem 94(2):202–209

    CAS  Google Scholar 

  97. Vázquez M, Torres JA, Gallardo JM, Saraiva J, Aubourg SP (2013) Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment. Innov Food Sci Emerg Technol 18(10):24–30

  98. Venugopal V (2005) Postharvest quality changes and safety hazards. Seafood processing. Food science and technology. CRC Press, New York, pp 23–60

    Google Scholar 

  99. Vidacek S, de las Heras C, Solas MT, Rodriguez Mahilloc AI, Tejada M (2009) Effect of high hydrostatic pressure on mortality and allergenicity of Anisakis simplex L3 and on muscle properties of infested hake. J Sci Food Agric 89(13):2228–2235

    CAS  Google Scholar 

  100. Wada S, Ogawa Y (1996) High pressure effects on fish lipid degradation: myoglobin change and water holding capacity. In: Hayashi R, Balny C (eds) Progress in biotechnology, vol 13. Elsevier, Amsterdam, pp 351–356

  101. Xiong YL (1997) Structure-function relationships of muscle proteins. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel Dekker, New York, pp 341–392

    Google Scholar 

  102. Yagiz Y, Kristinsson HG, Balaban MO, Marshall MR (2007) Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and Mahi Mahi (Coryphaena hippurus). J Food Sci 72(9):C509–C515

    CAS  Google Scholar 

  103. Yagiz Y, Kristinsson HG, Balaban MO, Welt BA, Ralat M, Marshall MR (2009) Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chem 116(4):828–835

    CAS  Google Scholar 

  104. Yamamoto K, Yoshida Y, Morita J, Yasui T (1994) Morphological and physicochemical changes in the myosin molecules induced by hydrostatic pressure. J Biochem 116(1):215–220

    CAS  Google Scholar 

  105. Yarnpakdee S, Benjakul S, Kristinsson HG, Maqsood S (2012) Effect of pretreatment on lipid oxidation and fishy odour development in protein hydrolysates from the muscle of Indian mackerel. Food Chem 135(4):2474–2482

    CAS  Google Scholar 

  106. Yoshioka K, Yamada A, Maki T (1996) Application of high pressurization to fish meat: changes in the physical properties of carp skeletal muscle resulting from high pressure thawing. In: Hayashi R, Balny C (eds) Progress in biotechnology, vol 13. Elsevier, Amsterdam, pp 369–374

    Google Scholar 

  107. Yoshioka K, Yamada A, Maki T, Yoshimoto C, Yamamoto T (1999) Application of high pressurization to fish meat: the ultrastructural changes and nucleotide in frozen carp muscle under high pressure thawing. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Berlin, pp 501–504

    Google Scholar 

  108. Yoshioka K, Yamamoto T (1998) Changes of ultrastructure and the physical properties of carp muscle by high pressurization. Fish Sci 64(1):89–94

    CAS  Google Scholar 

  109. Zare Z (2004) High pressure processing of fresh tuna fish and its effects on shelf life. High pressure processing of fish. McGill University, Quebec

    Google Scholar 

  110. Zhu S, Le Bail A, Ramaswamy HS (2004) Ice crystal formation in pressure shift freezing of Atlantic salmon (Salmo salar) as compared to classical freezing methods. J Food Process Preserv 27(6):427–444

    Google Scholar 

  111. Zhu S, Ramaswamy HS, Simpson BK (2004) Effect of high-pressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. LWT - Food Sci Technol 37(3):291–299

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Australian Agency for International Development (AusAID) for the financial support through a PhD grant for Binh Q Truong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh H. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, B.Q., Buckow, R., Stathopoulos, C.E. et al. Advances in High-Pressure Processing of Fish Muscles. Food Eng Rev 7, 109–129 (2015). https://doi.org/10.1007/s12393-014-9084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9084-9

Keywords

Navigation