Skip to main content

Advertisement

Log in

Chemical Characterization and Source Apportionment of PM2.5 near Semi-Urban Residential-Industrial Areas

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

This study aims to determine the concentrations of the trace metals (TM) and water soluble inorganic ions (WSII) of the PM2.5 pollutant collected in the suburban industrial-residential airshed during the southwest (SW), inter-monsoon (IM) and northeast (NE) monsoons in Skudai, Johor Bahru. The PM2.5 samples were collected using the MiniVol™ portable air sampler equipped with filter paper. The TM and WSII of PM2.5 were determined by using the inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The sources of the PM2.5 composition were determined using the Positive Matrix factorisation (PMF) and the origin of the measured air-masses were determined by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). The results show that the major TM identified were Fe > Ba > Zn > Mg > Al. Meanwhile for the WSII, the major contributor was the secondary inorganic aerosols (SIA); NO3, SO42− and NH4+. The six predominant sources identified were (1) mineral dust pollution (4.2%), (2) source of mixed road dust and biomass burning (18.1%), (3) mixed secondary inorganic aerosol and road dust emission (18.1%), (4) emission of the non-combustion traffic source (25.4%), (5) industrial emission (18.1%) and (6) undefined (16.1%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data and materials generated and analyzed in this published article are available from the corresponding author upon reasonable request.

References

  • Amil N, Latif MT, Khan MF, Mohamad M (2015) Meteorological-gaseous influences on seasonal PM25 variability in the Klang Valley urban-industrial environment. Atmos Chem Phys 15(18):26423–26479

    Google Scholar 

  • Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43:1650–1659

    CAS  Google Scholar 

  • Amil N, Latif MT, Khan MF, Mohamad M (2016) Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment. Atmos Chem Phys 16:5357–5381

    CAS  Google Scholar 

  • Arimoto R, Duce R, Savoie D, Prospero J, Talbot R, Cullen J, Tomza U, Lewis N, Ray B (1996) Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J Geophys Res 101(D1):2011–2023

    CAS  Google Scholar 

  • Baltrusaitis J, Chen H, Rubasinghege G, Grassian VH (2012) Heterogeneous atmospheric chemistry of lead oxide particles with nitrogen dioxide increases lead solubility: environmental and health implications. Environ Sci Technol 46(23):12806–12813. https://doi.org/10.1021/es3019572

    Article  CAS  Google Scholar 

  • Barbante C, Veysseyre A, Ferrari C, Van de Velde K, Morel C, Capodoglio G, Cescon P, Scarponi G, Boutron C (2001) Greenland snow evidence of large scale atmospheric contamination for platinum, palladium, and rhodium. Environ Sci Technol 35(5):835–839

    CAS  Google Scholar 

  • Begum BA, Biswas SK, Markwitz A, Hopke PK (2010) Identification of sources of fine and coarse particulate matter in Dhaka. Bangladesh Aerosol Air Qual Res 10:345–353. https://doi.org/10.4209/aaqr.2009.12.0082

    Article  CAS  Google Scholar 

  • Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, van Dingenen R, Estep K, Amini H, Apte JS, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S, Hopke PK, Knibbs LD, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador JLT, Shaddick G, Anderson HR, Vos T, Forouzanfar MH, Burnett RT, Cohen A (2013) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50:79–88. https://doi.org/10.1021/acs.est.5b03709

    Article  CAS  Google Scholar 

  • Callen MS, de la Cruz MT, Lopez JM, Navarro MV, Mastral AM (2009) Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemo 76:1120–1129. https://doi.org/10.1016/j.chemosphere.2009.04.015

    Article  CAS  Google Scholar 

  • Callén MS, López JM, Mastral AM (2013) Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models. Environ Sci Poll Res 20(5):3240

    Google Scholar 

  • Cao J, Xu H, Xu Q, Chen B, Kan H (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted chinese city. Environ Health Persp 120:373–378

    CAS  Google Scholar 

  • Chandra Mouli P, Venkata Mohan S, Jayarama Reddy S (2003) A study on major inorganic ion composition of atmospheric aerosols at Tirupati. J Hazard Mater B96:217–228

    Google Scholar 

  • Cheng YH, Liu ZS, Chen CC (2010) On-road measurements of ultrafine particle concentration profiles and their size distributions inside the longest highway tunnel in Southeast Asia. Atmos Environ 44:763–772

    CAS  Google Scholar 

  • Choi J, Heo J-B, Ban S-J, Yi S-M, Zoh K-D (2013) Source apportionment of PM25 at the coastal area in Korea. Sci Total Environ 447:370–380

    CAS  Google Scholar 

  • Chueinta W, Hopke PK, Paatero P (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos Environ 34:3319–3329

    CAS  Google Scholar 

  • Colls J (2002) Air Pollution, 2nd edn. Spon Press, London and New York

    Google Scholar 

  • Dahari N, Muda K, Hussein N, Latif MT, Khan MF, Mohamad Khir MS (2019) Long-Range Transport and Local Emission of Atmospheric PM2.5 in Southern Region of Peninsular Malaysia. IOP Conference Series Mater Sci Eng. https://doi.org/10.1088/1757-899X/636/1/012005

    Article  Google Scholar 

  • Dahari N, Latif MT, Muda K, Hussein N (2020) Influence of meteorological variables on suburban atmospheric PM2.5 in the Southern region of Peninsular Malaysia. Aerosol Air Qual Res 20:14–25. https://doi.org/10.4209/aaqr.2019.06.0313

    Article  CAS  Google Scholar 

  • Dai W, Gao J, Cao G, Ouyang F (2013) Chemical composition and source identification of PM2.5 in the suburb of Shenzhen. China Atmos Res 122:391–400. https://doi.org/10.1016/j.atmosres.2012.12.004

    Article  CAS  Google Scholar 

  • Dall’Osto M, Querol X, Amato F, Karanasiou A, Lucarelli F, Nava S, Calzolai and G., Chiari, M. (2013) Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during sapuss-diurnal variations and PMF receptor modelling. Atmos Chem Phys 13:4375–4392

    Google Scholar 

  • Dawson JP, Adams PJ, Pandis SN (2007) Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos Chem Phys 7:4295–4309. https://doi.org/10.5194/acp-7-4295-2007

    CAS  Google Scholar 

  • Department of Statistics Malaysia, Department of Statistics Malaysia Official Website. 2015

  • Du HH, Kong LD, Cheng TT, Chen JM, Du JF, Li L (2011) Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos Environ 45:5131–5137

    CAS  Google Scholar 

  • Elhadi R, Abdullah AM, Abdul AH, Zulfa H, A. and Khan, M. D. et al (2018) Seasonal variations of atmospheric particulate matter and its content of heavy metals in Klang Valley. Malaysia Aerosol Air Qual Res 18:1148–1161. https://doi.org/10.4209/aaqr.2017.03.0113

    Article  Google Scholar 

  • Elser, M., Huang, R., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K., Huang, Y., Zhang, R., Li, Z., cAO, j., baltensperger, U., El-Haddad, I. and Prévôt, ASH. 2016 New insights into PM 25 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. 3207–3225

  • US EPA. U.S Environmental Protection Agency. 1978 National Air Quality, Monitoring and Emissions Trend Report, 1977. EPA-450/2–78–052. Research Triangle, Park. N.C.: U.S. Environmental Protection Agency.

  • Ferreira-Baptistaa L, De Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512

    Google Scholar 

  • Gieré R, Blackford M, Smith K (2006) TEM study of PM2. 5 emit- ted from coal and tire combustion in a thermal power station. Environ Sci Technol 40:6235–6240

    Google Scholar 

  • Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44:141–146. https://doi.org/10.1016/j.atmosenv.2009.10.016

    Article  CAS  Google Scholar 

  • Graney JR, Landis MS, Norris GA (2004) Concentrations and solubility of metals from indoor and personal exposure PM2.5 samples. Atmos Environ 38:237–247. https://doi.org/10.1016/j.atmosenv.2003.09.052

    Article  CAS  Google Scholar 

  • Huang Y, Li L, Li J, Wang X, Chen H, Chen J, Yang X, Gross DS, Wang H, Qiao L, Chen C (2013) A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai. China Atmos Chem Phys 13:3931–3944

    Google Scholar 

  • US EPA. Risk Assessment Guidance for Superfund, in: Part A. (2010). Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, vol. I. available at: http://www.epa. gov/risk/risk-assessment-guidance-superfund-rags-part (last access: 8 July 2016)

  • Joseph AE, Unnikrishnan S, Kumar R (2012) Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol Air Qual Res 12:61–72. https://doi.org/10.4209/aaqr.2011.04.0049

    Article  CAS  Google Scholar 

  • Kamiya Y, Ikemori F, Ohura T (2015) Optimisation of pre-treatment and ionisation for GC/MS analysis for the determination of chlorinated PAHs in atmospheric particulate samples. J Environ Analytical Chem 95(12):1157–1168. https://doi.org/10.1080/03067319.2015.1048439

    Article  CAS  Google Scholar 

  • Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43(21):3385–3395

    CAS  Google Scholar 

  • Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M. and Chung, J. X. (2016). Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmos. Chem. Phys.16(2): 597–617 (2016). https://doi.org/10.5194/acp-16-597-2016.

  • Khamkaew C, Chantara S, Janta R, Pani SK, Prapamontol T, Kawichai S, Wiriya W, Lin N-H (2016) Investigation of biomass burning chemical components over northern Southeast Asia during 7-SEAS/BASELInE 2014 campaign. Aerosol Air Qual Res 16:2655–2670

    CAS  Google Scholar 

  • Khan MF, Hirano K, Masunaga S (2010a) Urban and suburban aerosol in Yokohama, Japan: a comprehensive chemical characterization. Environ Monit Assess 171:441–456. https://doi.org/10.1007/s10661-009-1290-1

    Article  CAS  Google Scholar 

  • Khan, M.F., Hirano, K. and Masunaga, S. 2010b Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan.

  • Khan MF, Hirano K, Masunaga S (2010c) Suspended particulate matter aerosol collected in Yokohama. Japan Atmos Environ 44:2646–2657

    CAS  Google Scholar 

  • Khan F, Latif MT, Amil N, Juneng L, Mohamad N, Shahrul M, Nadzir M (2015) Characterization and source apportionment of particle number concentration at a semi-urban tropical environment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4541-4

    Article  Google Scholar 

  • Khan MF, Latif MT, Lim CH, Amil N, Jaafar SA, Dominick D, Tahir NM (2015b) Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmos Environ 106:178–190. https://doi.org/10.1016/j.atmosenv.2015.01.077

    Article  CAS  Google Scholar 

  • Khan, M. F., Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D. F. M. and Mizohata. 2016 A comprehensive assessment of PM25 physicochemical properties during the Southeast Asia dry season (southwest monsoon). J Geophys Res Atmos 121(24): 14:514–589 Doi: https://doi.org/10.1002/2016JD025894

  • Khan MF, Maulud KNA, Latif MT, Chung JX, Amil N, Alias A, Mohd Nadzir MS, Sahani M, Mohammad M, Jahaya MF, Hassan H, Jeba F, Md Tahir N, Abdullah SMS (2018) Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.025

    Article  Google Scholar 

  • Kim G, Scudlark JR, Church TM (2000) Atmospheric wet deposition of trace elements to Chesapeake and Delaware Bays. Atmos Environ 34(20):3437–3444

    CAS  Google Scholar 

  • Kim Oanh NT, Thiansathit W, Bond TC, Subramanian R, Winijkul E, Pawarmart I (2010) Compositional characterization of PM2.5 emitted from in-use diesel vehicles. Atmos Environ 44(1):15–22

    Google Scholar 

  • Kong SF, Wen B, Chen K, Yin Y, Li L, Li Q, Yuan L, Li XX, Sun X (2014) Ion chemistry for atmospheric size-segregated aerosol and depositions at an offshore site of Yangtze River Delta region. China Atmos Res 147–148:205–226

    Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra. India Sci Total Environ 407:6196–6204

    CAS  Google Scholar 

  • Latif MT, Othman MR, Johanny Z (2006) Kajian kualiti udara di bandar kajang. Selangor 10(2):275–284

    Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Bren-ninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

  • Lestari P, Mauliadi YD (2008) Source apportionment of particulate matter at urban mixed site in Indonesia using PMF. Atmos Environ 43:1760–1770

    Google Scholar 

  • Li L, Wu J, Hudda N, Sioutas C, Fruin SA, Delfino RJ (2013) Modeling the concentrations of on-road air pollutants in Southern California. Environ Sci Technol 47(16):9291–9299. https://doi.org/10.1021/es401281r

    Article  CAS  Google Scholar 

  • Liati A, Dimopoulos Eggenschwiler P, Schreiber D, Dasilva AR, Y (2013) Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environ Sci Technol 47(24):14495–14501

    CAS  Google Scholar 

  • Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont, Z., Qiu, X. H., Zhang, 585 S. Q., Hu, M., Lin, W. L., Smith, K. R. and Zhu, T 2016 Air pollutant emissions from Chinese 586 households: A major and underappreciated ambient pollution source, Proceedings of the National 587 Academy of Sciences of the United States of America, 113, 7756–7761, https://doi.org/10.1073/pnas.1604537113, 588.

  • Louie PKK, Chow JC, Chen LWA, Watson JG, Leung G, Sin DWM (2005) PM2.5 chemical composition in Hong Kong: urban and regional variations. Sci Total Environ 338:267–281. https://doi.org/10.1016/j.scitotenv.2004.07.021

    Article  CAS  Google Scholar 

  • Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identifica- tion/apportionment of fine and coarse air particles in Thessaloniki. Greece Atmos Environ 36:949–961

    CAS  Google Scholar 

  • Manousakas M, Diapouli E, Papaefthymiou H, Migliori A, Karydas AG, Padill-Alvarez R, Bogovac M, Kaiser RB, Jaksic M, Bogdanovic-Radivic I, Eleftheriadis K (2015) Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl Instruments Methods in Phys Res B 349:114–124. https://doi.org/10.1016/j.nimb.2015.02.037

    Article  CAS  Google Scholar 

  • Ministry of the Environment Japan (1997) Manual for Prediction of Pollution of Atmospheric Particulate Matter. Suuri-Keikaku, Tokyo

    Google Scholar 

  • Mariani RL, de Mello WZ (2007) PM2.5–10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos Environ 41:2887–2892. https://doi.org/10.1016/j.atmosenv.2006.12.009

    Article  CAS  Google Scholar 

  • McGowan H, Clark A (2008) Identification of dust transport pathways from lake eyre, australia using hysplit. Atmos Environ 42:6915–6925

    CAS  Google Scholar 

  • Meng, X., Ma, Y., Chen, R., Zhou, Z., Chen, B. and Kan, H. 2016 Size-Fractionated Particle Number Concentrations and Daily Mortality in a Chinese City

  • Morales, R. and Leiva, G. 2006 Distribution and Critical Concentration of PM in the city of Santiago, Chile (in Spanish), in: Atmo- spheric Urban Pollution: Critical episodes of the Environmental pollution in the City of Santiago, Chile (in Spanish), edited by: Morales, R. G. E., 1st edn., Editorial Universitaria SA, Santiago, Chile

  • MOT, Ministry of Transportation. (2017). Transport Statistics Malaysia. http://www.mot.gov.my/my/Statistik%20Tahunan%20Pengangkutan/Statistik%20Pengangkutan%20Malaysia%202017.pdf (Accessed on July 2018)

  • Murillo-Tovar MA, Saldarriaga-Noreña H, Hernández-Mena L, Campos-Ramos A, Cárdenas-González B, Ospina-Noreña JE, Cosío-Ramírez R, Díaz-Torres JDJ, Smith W (2015) Potential sources of trace metals and ionic species in PM2.5 in Guadalajara, Mexico: a case study during dry season. Atmos 6:1858–1870

    CAS  Google Scholar 

  • Norris, G., Duvall, R., Brown, S., and Bai, S. 2014 EPA positive matrix factorization (PMF) 5.0 fundamentals & user guide, Prepared for the US Environmental Protection Agency, Washington, DC, by the National Exposure Research Laboratory, Research Triangle Park, USA.

  • Ogulei D, Hopke PK, Wallace LA (2006a) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16:204–215

    CAS  Google Scholar 

  • Ogulei D, Hopke PK, Zhou L, Patrick Pancras J, Nair N, Ondov JM (2006b) Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos Environ 40(Supplement 2):396–410

    Google Scholar 

  • Oura Y, Iguchi H, Nagahata T, Nakamatsu H, Otoshi T, Ebihara M (2007) Elemental compositions of atmospheric particulates collected in Japan from 2002 to 2004. J Radio Analyt Nucl Chem 272(2):381–385

    CAS  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factors analysis. Chemometer Intell Lab 37:23–35

    CAS  Google Scholar 

  • Paatero P. 2004 End user's guide to multilinear engine applications.

  • Perrone MG, Gualtieri M, Ferrero L, Lo Porto C, Udisti R, Bolzacchini E, Camatini M (2010) Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemo 78:1368–1377

    CAS  Google Scholar 

  • Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Oliveira C, Sanchez de la Campa A, Artíñano B, Matos M (2011) OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45(34):6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045

    Article  CAS  Google Scholar 

  • Polissar AV, Hopke PK (1998) Atmospheric aerosol over Alaska: 2. elemental composition and sources. J Geophys Res Atmos 103:19045–19057

    CAS  Google Scholar 

  • Road Traffic Statistics, Malaysia Demographics Profile 2018 Jabatan Keselamatan Jalan Raya Statistik Kemalangan Jalan Raya, kementerian pengangkutan malaysia

  • Raes F, Van Dingenen R, Vignati E, Wilson J, Putaud J-P, Seinfeld JH, Adams P (2000) Formation and cycling ofaerosols in the global troposphere. Atmos Environ 34:4215–4240

    CAS  Google Scholar 

  • Rahman SA, Hamzah MS, Wood AK, Elias MS, Salim A, Ashifa N, Sanuri E (2011) Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmos Pollut Res 2:197–206. https://doi.org/10.5094/APR.2011.025

    Article  CAS  Google Scholar 

  • Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I (2014) Surfactants in at- mospheric aerosols and rainwater around lake ecosystem. Environ Sci Pollut Res 22(8):6024–6033

    Google Scholar 

  • Santoso M, Hopke PK, Hidayat A, L, D. D. (2008) Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.01.057

    Article  Google Scholar 

  • Santoso M, Lestiani DD, Markwitz A (2013) Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-012-2350-5

    Article  Google Scholar 

  • Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(1):526–1537

    Google Scholar 

  • Sowlat MH, Naddafi K, Yunesian M, Jackson PL, Shahsavani A (2012) Source apportionment of total suspended particulates in an arid area in southwestern Iran using positive matrix factorization. Bull Environ Contam Toxicol 88:735–740

    CAS  Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077

    Google Scholar 

  • Stelson AW, Seinfeld JH (1982) Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos Environ 16:983–992

    CAS  Google Scholar 

  • Sternbeck J, Sjodin A, Andreasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744

    CAS  Google Scholar 

  • Stohl A (1998) Computation, accuracy and application of trajectories - A review and bibliography. Atmos Environ 32:947–966

    CAS  Google Scholar 

  • Su L, Yuan Z, Fung JC, Lau AK (2015) A Comparison of HYSPLIT backward trajectories generated from Two GDAS datasets. Sci Total Environ 506–507:527–537

    Google Scholar 

  • Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, Sahani M (2017) Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2017.05.153

    Article  Google Scholar 

  • Tai APK, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. Atmos Environ 44:3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060

    Article  CAS  Google Scholar 

  • Tan JH, Duan JV, He KB, Ma YL, Duan FK, Cheng Y (2009) Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. J Environ Sci China 21:774–781

    CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    Google Scholar 

  • Terzi E, Argyropoulos G, Bougatioti A, Mihalopoulos N, Nikolaou K, Samaram C (2010) Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ 44(18):2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019

    Article  CAS  Google Scholar 

  • Tositti L, Brattich E, Cinelli G, Baldacci D (2014) 12 years of 7Be and 210Pb in Mt. Cimone, and their correlation with meteorological parameters. Atmos Environ 87:108–122

    CAS  Google Scholar 

  • Vecchi R, Marcazzan G, Valli G (2007) A study on nighttime–daytime PM10 concentration and elemental com- position in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos Environ 41:2136–2144

    CAS  Google Scholar 

  • Wagstrom KM, Pandis SN (2011) Source–receptor relationships for fine particulate matter concentrations in the Eastern United States. Atmos Environ 45:347–356

  • Wåhlin P, Berkowicz R, Palmgren F (2006) Characterisation of traffic-generated particulate matter in Copenhagen. Atmos Environ 40:2151–2159. https://doi.org/10.1016/j.atmosenv.2005.11.049

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang G, Tang A, Yuan H, Sun Y, Chen S, Zheng A (2005) The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos Environ 39(21):3771–3784. https://doi.org/10.1016/j.atmosenv.2005.03.013

    Article  CAS  Google Scholar 

  • Wang X, Bi X, Chen D, Sheng G, Fu J (2006) Hospital indoor respirable particles and carbonaceous composition. Build Environ 41:992–1000

    Google Scholar 

  • WHO, World Health Organization. Air quality guidelines: Global update 2005. Copenhagen: WHO Regional Office for Europe; 2006. 2. Methods for burden of disease attributable to ambient air pollution for the year 2012. Geneva:

  • Wilson W, Suh H (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc 47(12):1238–1249. https://doi.org/10.1080/10473289.1997.10464074

    Article  CAS  Google Scholar 

  • World Health Organization. 2006 http://www.who.int/phe/health_topics/ outdoorair/databases/AAP_BoD_methods_ March2014.pdf?ua=1 [Accessed May 2016]

  • Wu C-F, Larson TV, Wu S-Y, Williamson J, Westberg HH, Liu L-JS (2007) Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Sci Total Environ 386:42–52

    CAS  Google Scholar 

  • Xu L, Chen X, Chen J, Zhang F, He C, Zhao J, Yin L (2012) Seasonal variations and chemical compositions of PM2.5 aerosol in the Urban area of Fuzhou. China Atmos Res 104–105:264–272

    Google Scholar 

  • Xu H, Cao J, Chow JC, Huang RJ, Shen Z, Chen LW, Ho KF, Watson JG (2016) Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: evidences of changing source emissions. Sci Total Environ 545–546:546–555

    Google Scholar 

  • Yang F, Chen H, Du J, Yang X, Gao S, Chen J, Geng F (2012) Evolution of the mixing state of fine aerosols during haze events in Shanghai. Atmos Res 104:193–201

    Google Scholar 

  • Yu SC, Li P, Wang L, Wang P, Wang S, Chang S, Liu W, Alapaty K (2016) Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proc Natl Acad Sci USA 113:E2209–E2210

    CAS  Google Scholar 

Download references

Acknowledgements

This research is assisted with the financial support from the research university GUP TIER II grants (Q.J130000.2622.14J61, Q.J130000.2722.02K82 and Q.J130000.2622.02J54) and FRGS grant (R.J130000.7822.4F984) from Universiti Teknologi Malaysia, Skudai.

Author information

Authors and Affiliations

Authors

Contributions

Nadhira Dahari: Conceptualization; write and analysis; Khalida Muda: Supervision and edit; Md Firoz Khan: Conceptualization, software and methodology; Mohd Talib Latif: Validation, review and edit; Norelyza Hussein: Supervision and edit; Doreena Dominick: Validation and review.

Corresponding author

Correspondence to Khalida Muda.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical Approval

All authors certify that they have no affiliation with or involvement in any organization or entity with any financial or non-financial interests in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahari, N., Muda, K., Khan, M.F. et al. Chemical Characterization and Source Apportionment of PM2.5 near Semi-Urban Residential-Industrial Areas. Expo Health 14, 149–170 (2022). https://doi.org/10.1007/s12403-021-00425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-021-00425-5

Keywords

Navigation