Skip to main content
Log in

Schedule-free high-frequency transit operations

  • Original Paper
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

High-frequency transit systems are essential for the socioeconomic and environmental well-being of large and dense cities. The planning and control of their operations are important determinants of service quality. Although headway and optimization-based control strategies generally outperform schedule-adherence strategies, high-frequency operations are mostly planned with schedules, in part because operators must observe resource constraints (neglected by most control strategies) while planning and delivering service. This research develops a schedule-free paradigm for high-frequency transit operations, in which trip sequences and departure times are optimized in real-time, employing stop-skipping strategies and utilizing real-time information to maximize service quality while satisfying operator resource constraints. Following a discussion of possible methodological approaches, a simple methodology is applied to operate a simulated transit service without schedules. Results demonstrate the feasibility of the new paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abkowitz M, Lepofsky M (1990) Implementing headway-based reliability control on transit routes. J Transp Eng 116(1):49–63

    Article  Google Scholar 

  • Adenso-Díaz B, González MO, González-Torre P (1999) On-line timetable re-scheduling in regional train services. Transp Res Part B Methodol 33(6):387–398. doi:10.1016/S0191-2615(98)00041-1

    Article  Google Scholar 

  • Barnett A (1974) On controlling randomness in transit operations. Transp Sci 8(2):102–116

    Article  Google Scholar 

  • Bartholdi JJ, Eisenstein DD (2012) A self-coördinating bus route to resist bus bunching. Transp Res 46B(4):481–491. doi:10.1016/j.trb.2011.11.001

    Article  Google Scholar 

  • Berrebi SJ, Watkins KE, Laval JA (2015) A real-time bus dispatching policy to minimize passenger wait on a high frequency route. Transp Res Part B Methodol 81:377–389

    Article  Google Scholar 

  • Boyle D, Pappas J, Boyle P, Nelson B, Sharfarz D, Benn H (2009) TCRP Report 135: controlling system costs: basic and advanced scheduling manuals and contemporary issues in transit scheduling. Transportation Research Board, Washington, DC

    Book  Google Scholar 

  • Cats O, Larijani AN, Koutsopoulos HN, Burghout W (2011) Impacts of holding control strategies on transit performance: bus simulation model analysis. Transp Res Record 2216:51–58

    Article  Google Scholar 

  • Ceder A (2007) Public transit planning and operation: theory, modeling and practice. Elsevier, Butterworth-Heinemann, Oxford

    Google Scholar 

  • Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2010) A tabu search algorithm for rerouting trains during rail operations. Transp Res Part B Methodol 44(1):175–192. doi:10.1016/j.trb.2009.05.004

    Article  Google Scholar 

  • Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2012) Bi-objective conflict detection and resolution in railway traffic management. Transp Res Part C Emerg Technol 20(1):79–94. doi:10.1016/j.trc.2010.09.009

    Article  Google Scholar 

  • Cortés CE, Jara-Díaz S, Tirachini A (2011) Integrating short turning and deadheading in the optimization of transit services. Transp Res Part A Policy Pract 45(5):419–434. doi:10.1016/j.tra.2011.02.002

    Article  Google Scholar 

  • Daganzo CF, Pilachowski J (2011) Reducing bunching with bus-to-bus cooperation. Transp Res 45B(1):267–277

    Article  Google Scholar 

  • D’Ariano A, Pacciarelli D, Pranzo M (2007) A branch and bound algorithm for scheduling trains in a railway network. Eur J Oper Res 183(2):643–657. doi:10.1016/j.ejor.2006.10.034

    Article  Google Scholar 

  • D’Ariano A, Pacciarelli D, Pranzo M (2008) Assessment of flexible timetables in real-time traffic management of a railway bottleneck. Transp Res Part C Emerg Technol 16(2):232–245. doi:10.1016/j.trc.2007.07.006

    Article  Google Scholar 

  • Delgado F, Muñoz JC, Giesen R (2012) How much can holding and/or limiting boarding improve transit performance? Transp Res Part B Methodol 46(9):1202–1217

    Article  Google Scholar 

  • Desaulniers G, Hickman M (2007) Public transit. In: Barnhart C, Laporte G (eds) Handbooks in OR and MS 14: transportation, pp 69–127

  • Eberlein XJ, Wilson NH, Bernstein D (2001) The holding problem with real-time information available. Transp Sci 35(1):1–18

    Article  Google Scholar 

  • Huisman D (2007) A column generation approach for the rail crew re-scheduling problem. Eur J Oper Res 180(1):163–173. doi:10.1016/j.ejor.2006.04.026

    Article  Google Scholar 

  • Huisman D, Wagelmans AP (2006) A solution approach for dynamic vehicle and crew scheduling. Eur J Oper Res 172(2):453–471. doi:10.1016/j.ejor.2004.10.009

    Article  Google Scholar 

  • Kittelson & Associates, Parsons Brinckerhoff, KFH Group, Texas A&M Transportation Institute (2013) TCRP Report 165: Transit Capacity and Quality of Service Manual, 3rd edn. Transportation Research Board

  • Krasemann JT (2012) Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances. Transp Res Part C Emerg Technol 20(1):62–78. doi:10.1016/j.trc.2010.12.004

    Article  Google Scholar 

  • Leiva C, Muñoz JC, Giesen R, Larrain H (2010) Design of limited-stop services for an urban bus corridor with capacity constraints. Transp Res Part B Methodol 44(10):1186–1201. doi:10.1016/j.trb.2010.01.003

    Article  Google Scholar 

  • Mazzarello M, Ottaviani E (2007) A traffic management system for real-time traffic optimisation in railways. Transp Res Part B Methodol 41(2):246–274. doi:10.1016/j.trb.2006.02.005

    Article  Google Scholar 

  • Mesquita M, Paias A (2008) Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem. Comput Oper Res 35(5):1562–1575. doi:10.1016/j.cor.2006.09.001

    Article  Google Scholar 

  • Osuna EE, Newell GF (1972) Control strategies for an idealized public transportation system. Transp Sci 6(1):52–72

    Article  Google Scholar 

  • Rezanova NJ, Ryan DM (2010) The train driver recovery problem—a set partitioning based model and solution method. Comput Oper Res 37(5):845–856. doi:10.1016/j.cor.2009.03.023

    Article  Google Scholar 

  • Rodriguez J (2007) A constraint programming model for real-time train scheduling at junctions. Transp Res Part B Methodol 41(2):231–245. doi:10.1016/j.trb.2006.02.006

    Article  Google Scholar 

  • Sáez D, Cortés CE, Milla F, Núñez A, Tirachini A, Riquelme M (2012) Hybrid predictive control strategy for a public transport system with uncertain demand. Transportmetrica 8(1):61–86

    Article  Google Scholar 

  • Şahin S (1999) Railway traffic control and train scheduling based oninter-train conflict management. Transp Res Part B Methodol 33(7):511–534. doi:10.1016/S0191-2615(99)00004-1

    Article  Google Scholar 

  • Sánchez-Martínez GE (2015) Real-time operations planning and control of high-frequency transit. Ph.D. thesis, Massachusetts Institute of Technology

  • Sánchez-Martínez G, Koutsopoulos H, Wilson N (2016) Real-time holding control for high-frequency transit with dynamics. Transp Res Part B Methodol 83:1–19. doi:10.1016/j.trb.2015.11.013

    Article  Google Scholar 

  • Site PD, Filippi F (1998) Service optimization for bus corridors with short-turn strategies and variable vehicle size. Transp Res Part A Policy Pract 32(1):19–38. doi:10.1016/S0965-8564(97)00016-5

    Article  Google Scholar 

  • Törnquist J, Persson JA (2007) N-tracked railway traffic re-scheduling during disturbances. Transp Res Part B Methodol 41(3):342–362. doi:10.1016/j.trb.2006.06.001

    Article  Google Scholar 

  • Valouxis C, Housos E (2002) Combined bus and driver scheduling. Comput Oper Res 29(3):243–259. doi:10.1016/S0305-0548(00)00067-8

    Article  Google Scholar 

  • Veelenturf LP, Potthoff D, Huisman D, Kroon LG (2012) Railway crew rescheduling with retiming. Transp Res Part C Emerg Technol 20(1):95–110. doi:10.1016/j.trc.2010.09.008

    Article  Google Scholar 

  • Vuchic VR (2005) Urban transit: operations, planning, and economics

  • Walker CG, Snowdon JN, Ryan DM (2005) Simultaneous disruption recovery of a train timetable and crew roster in real time. Comput Oper Res 32(8):2077–2094. doi:10.1016/j.cor.2004.02.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel E. Sánchez-Martínez.

Additional information

This research was funded in part by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1122374 and in part by Transport for London. This research also benefited from the support of the Bus Rapid Transit Centre of Excellence, funded by the Volvo Research and Educational Foundations (VREF), and MIT’s MISTI-Chile program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Martínez, G.E., Wilson, N.H.M. & Koutsopoulos, H.N. Schedule-free high-frequency transit operations. Public Transp 9, 285–305 (2017). https://doi.org/10.1007/s12469-016-0129-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-016-0129-8

Keywords

Navigation