Skip to main content
Log in

Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District, South India

، Neyveli تقييم المياه الجوفية في حوض Hydrogeochemical مقاطعة آودالور ، جنوب الهند

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na + K over Ca + Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.

تجريدي

في ضوء نضوب التدريجي لخزان المياه الجوفية وتدهور نوعية المياه في حوض Neyveli ، تحقيقا بشأن حل المكونات الرئيسية في عينات المياه الجوفية 25 قد أنجز. وكان الهدف الرئيسي من عمليات الكشف عن تقييم الجيوكيميائية في جميع أنحاء المنطقة. ويسكنها بشكل مكثف Neyveli طبقة المياه الجوفية خلال decenniums الماضي ، مما أدى إلى التوسع في المنطقة السكنية والزراعية. وبالاضافة الى الجفاف نصف النهائي ، سريع التنمية الاجتماعية والاقتصادية ويحفز زيادة الطلب على المياه ، التي تؤدى تدريجيا عن طريق استخراج المياه الجوفية. وتتميز المياه الجوفية في منطقة الدراسة عن طريق هيمنة نا + ك + الكالسيوم على المغنيسيوم. تم العثور على HCO3 أن تكون مهيمنة أنيون يليه الكلورين وSO4. تم الحصول على العلاقة الإيجابية بين السامية الأيونات التالية : الكالسيوم ، الماغنسيوم ، الكالسيوم ، الكلور ، الماغنسيوم ، الصوديوم ، البوتاسيوم ، HCO3 - H4SiO4 وكيه. ويمكن تقسيم أنواع الهيدروكيميائية في المنطقة إلى مجموعتين رئيسيتين : المجموعة الأولى تضم مختلطة الكالسيوم ، الماغنسيوم ، الكالسيوم وأنواع الكلور ، كلور. المجموعة الثانية تضم أنواع مختلطة الكالسيوم ، الصوديوم والكالسيوم ، HCO3 HCO3. معظم العينات الجوفية تقع ضمن الحد المسموح به من منظمة الصحة العالمية القياسية. تفسير البيانات تشير إلى أن العوامل الجوية التبادل الأيوني ، وردود الفعل والتبخر الى حد ما هي العوامل المسيطرة التي تحدد تركيبة الأيونية الرئيسية في منطقة الدراسة.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adepelumi AA, Ako BD, Ajayi TR, Afolabi O, Omotoso EJ (2009) Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. Environ Geol 56:927–933

    Article  Google Scholar 

  • Amer AM (1995) Saltwater intrusion in coastal aquifers. Water Resour Manag 2:521–529

    Google Scholar 

  • Anandan KS, Sahay SN, Karthikeyan S (2010b) Delineation of recharge area and artificial recharge studies in the Neyveli hydrogeological basin. Mine Water Environ 29:14–22

    Article  Google Scholar 

  • Anandhan P (2005) Hydrogeochemical studies in and around Neyveli mining region, Tamilnadu, India. Ph.D Thesis, Department of Earth Sciences, Annamalai University, India, p 189

  • Anandhan KS, Sahay SN, Ramabadran TK, Shiv Prasad S (2010a) Groundwater control techniques for safe exploitation of the Neyveli Lignite deposit, Cuddalore District, Tamilnadu, India. Mine Water Environ 29:3–13

    Article  Google Scholar 

  • Andersen MS, Nyvang V, Jakobsen R, Postma D (2005) Geochemical processes and solute transport at the seawater/freshwater interface of a sand aquifer. Geochim Cosmochim Acta 69:3979–3994

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and waste water, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • Apodaca LE, Jeffrey BB, Michelle CS (2002) Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorodo. J Am Water Resour Assoc 38:133–143

    Article  Google Scholar 

  • Appelo CAJ, Postman D (2005) Geochemistry. Groundwater and pollution, 2nd edn. Balkema, Rotterdam, p 649

    Google Scholar 

  • Bhatt KB, Salakani S (1996) Hydrogeochemistry of the upper Ganges river, India. J Geol Soc India 48:171–182

    Google Scholar 

  • Cederstorm DJ (1946) Genesis of groundwater in the coastal plain of Virginia. Environ Geol 41:218–245

    Google Scholar 

  • Centre for Groundwater Board (CGWB) (1997) Groundwater resources and development prospects in South Arcot-Vallalar District, Tamilnadu. South Eastern Coastal Region, Chennai (in press)

  • Chidambaram S, Ramanathan AL, Prasanna MV, Anandhan P, Srinivasamoorthy K, Vasudevan S (2007) Identification of hydrogeochemically active regimes in groundwaters of erode district, Tamilnadu-A statistical approach. Asian J Water Environ Pollut 5(3):93–102

    Google Scholar 

  • Comly HH (1945) Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 129:12–114

    Google Scholar 

  • Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater regime. J Geol Soc India 47:179–188

    Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC, Boca Raton

    Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York, p 506

    Google Scholar 

  • Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin basin, North west China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • Fianko JR, Nartey Vincent K, Donkor A (2009) The hydrochemistry of groundwater in rural communities within the Tema District, Ghana. Environ Monit Assess. doi:10.1007/s10661-009-1125-0

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc, Englewood Cliffs, p 553

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Sci J 170:795–840

    Google Scholar 

  • Gilly G, Corrao G, Favilli S (1984) Concentrations of nitrates in drinking water and incidence of gastric carcinomas. First descriptive study of the Piemonate Region, Italy. Sci Total Environ 34:35–37

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunda WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Article  Google Scholar 

  • Jalali M (2010) Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Environ Monit Assess 166:359–369

    Article  Google Scholar 

  • Jankowski J, Acworth RI (1997) Impact of depris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the Yass River catchment, New South Wales. Aust Hydrogeol J 5(4):71–88

    Article  Google Scholar 

  • Karanth KB (1997) Groundwater assessment, development and management. McGraw-Hill Publishers, New Delhi

    Google Scholar 

  • Katz BG, Gopalan TB, Bullen TD, Davis JH (1998) Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled karst. Groundwat J 35:1014–1028

    Google Scholar 

  • Lloyd JW, Heathcode JA (1985) Nature inorganic hydrochemistry in relation to groundwater. Oxford University Press, New York

    Google Scholar 

  • Maya AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. J Hydrol 172:31–59

    Article  Google Scholar 

  • Melloul LC, Goldenberg AJ (1998) Early-indicator signals of groundwater contamination: the case of seawater encroachment. Environ Geol 33(4):279–288

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Moller P, Rosenthal E, Geyer S, Guttman J, Dulski P, Rybakov M (2007) Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chem Geol 239:27–49

    Article  Google Scholar 

  • NLC (1970–2007) Various unpublished in-house technical reports on groundwater modeling of the Neyveli Basin. Neyveli Lignite Corporation Ltd, Neyveli

    Google Scholar 

  • Ozler HM (2003) Hydrochemistry and salt-water intrusion in the Van aquifer, East Turkey. Environ Geol 43:759–775

    Google Scholar 

  • Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2009) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168:63–90

    Article  Google Scholar 

  • Rao NS (2006) Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India. Environ Geol 49:413–429

    Article  Google Scholar 

  • Ravi Kumar V, Sahay SN, Periasamy SP, Karthikeyan S (2010) Groundwater basin management at the Neyveli Lignite Mines. Mine Water Environ 29:23–28

    Article  Google Scholar 

  • Sami K (1992) Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J Hydrol 139:27–48

    Article  Google Scholar 

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In methods and techniques of groundwater investigations and development. UNESCO, Paris, pp 54–83

    Google Scholar 

  • Schoeller H (1967) Geochemistry of groundwater-an international guide for research and practice, Chapter 15. UNESCO, Paris, pp 1–18

    Google Scholar 

  • Sikdar PK, Sarkar SS, Palcoudhury S (2001) Geochemical evolution of groundwater in the quaternary aquifer of Calcutta and Howrah, India. J Asian Earth Sci 19:579–594

    Article  Google Scholar 

  • Spears DA (1986) Mineralogical control of the chemical evolution of groundwater. In: Trudgill ST (ed) Solute processes. Wiley, Chichester, p 512

    Google Scholar 

  • Subramani T, Elango L, Damodaraswamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamilnadu, India. J Environ Geol 47:1099–1110

    Article  Google Scholar 

  • Taheri Tizro A, Voudouris KS (2008) Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrol Process 22:3066–3078

    Article  Google Scholar 

  • Terzic J, Markovic T, Pekas Z (2008) Influence of sea-water intrusion and agricultural production on the Blato Aquifer, Island of Korcula, Croatia. Environ Geol 54:719–729

    Article  Google Scholar 

  • Tesoriero AJ, Spruill TB, Eimers L (2004) Geochemistry of shallow groundwater in coastal plain environments in the southeastern United States: implication for aquifer susceptibility. Appl Geochem 19:1471–1482

    Article  Google Scholar 

  • Wen X, Wu Y, Su J, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina basin, northwestern China. Environ Geol 48:665–675

    Article  Google Scholar 

  • Wen XH, Wu YQ, Wu J (2008) Hydrochemical characteristics of groundwater in the Zhangye basin, northwestern China. Environ Geol 55:1713–1724

    Article  Google Scholar 

  • WHO (World Health Organization) (2004) Guidelines for drinking water quality, vol 1, 3rd edn. WHO, Geneva, p 515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, M.V., Chidambaram, S., Senthil Kumar, G. et al. Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District, South India. Arab J Geosci 4, 319–330 (2011). https://doi.org/10.1007/s12517-010-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0191-5

Keywords

Navigation