Skip to main content
Log in

Practical physical activity measurement in youth: a review of contemporary approaches

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The accurate evaluation of physical activity levels amongst youth is critical for quantifying physical activity behaviors and evaluating the effect of physical activity interventions. The purpose of this review is to evaluate contemporary approaches to physical activity evaluation amongst youth.

Data sources

The literature from a range of sources was reviewed and synthesized to provide an overview of contemporary approaches for measuring youth physical activity.

Results

Five broad categories are described: selfreport, instrumental movement detection, biological approaches, direct observation, and combined methods. Emerging technologies and priorities for future research are also identified.

Conclusions

There will always be a trade-off between accuracy and available resources when choosing the best approach for measuring physical activity amongst youth. Unfortunately, cost and logistical challenges may prohibit the use of “gold standard” physical activity measurement approaches such as doubly labelled water. Other objective methods such as heart rate monitoring, accelerometry, pedometry, indirect calorimetry, or a combination of measures have the potential to better capture the duration and intensity of physical activity, while self-reported measures are useful for capturing the type and context of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohl HW, Fulton JE, Caspersen CJ. Assessment of physical activity among children and adolescents: a review and synthesis. Prev Med 2000;31(Suppl 2):S54–S76.

    Article  Google Scholar 

  2. Trost SG. Objective measurement of physical activity in youth: current issues, future directions. Exerc Sport Sci Rev 2001;29:32–36.

    Article  PubMed  CAS  Google Scholar 

  3. Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc 2005;37(Suppl 11):S582–S588.

    Article  PubMed  Google Scholar 

  4. Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med 2007;1:299–314.

    Article  Google Scholar 

  5. Eaton DK, Kann L, Kinchen S, Shanklin S, Ross J, Hawkins J, et al. Youth risk behavior surveillance-United States, 2009. MMWR 2010;59:1–142.

    PubMed  Google Scholar 

  6. Trost SG, Marshall AL, Miller R, Hurley JT, Hunt JA. Validation of a 24-h physical activity recall in indigenous and nonindigenous Australian adolescents. J Sci Med Sport 2007;10:428–435.

    Article  PubMed  Google Scholar 

  7. Brown H, Hume C, Chinapaw M. Validity and reliability of instruments to assess potential mediators of children’s physical activity: a systematic review. J Sci Med Sport 2009;12:539–548.

    Article  PubMed  Google Scholar 

  8. Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport 2000;71(Suppl):S59–S73.

    PubMed  CAS  Google Scholar 

  9. Ekelund U, Sjostrom M, Yngve A, Poortvliet E, Nilsson A, Froberg K, et al. Physical activity assessed by activity monitor and doubly labeled water in children. Med Sci Sports Exerc 2001:275–281.

  10. Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jequier E. Energy expenditure by doubly labeled water: validation in humans and proposed calculation. Am J Physiol 1986;250:823–830.

    Google Scholar 

  11. Goran MI. Application of the doubly labeled water technique for studying total energy expenditure in young children: a review. Pediatr Exerc Sci 1994;6:11–30.

    Google Scholar 

  12. Corder K, van Sluijs EM, Wright A, Whincup P, Wareham NJ, Ekelund U. Is it possible to assess free-living physical activity and energy expenditure in young people by self-report? Am J Clin Nutr 2009;89:862–870.

    Article  PubMed  CAS  Google Scholar 

  13. Arvidsson D, Slinde F, Hulthen L. Physical activity questionnaire for adolescents validated against doubly labelled water. Eur J Clin Nutr 2005;59:376–383.

    Article  PubMed  CAS  Google Scholar 

  14. Sjoberg A, Slinde F, Arvidsson D, Ellegard L, Gramatkovski E, Hallberg L, et al. Energy intake in Swedish adolescents: validation of diet history with doubly labelled water. Eur J Clin Nutr 2003;57:1643–1652.

    Article  PubMed  CAS  Google Scholar 

  15. Moore HJ, Ells LJ, McLure SA, Crooks S, Cumbor D, Summerbell CD, et al. The development and evaluation of a novel computer program to assess previous-day dietary and physical activity behaviours in school children: the Synchronised Nutrition and Activity Program (SNAP). Br J Nutr 2008;99:1266–1274.

    Article  PubMed  CAS  Google Scholar 

  16. Weston AT, Petosa R, Pate RR. Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc 1997;29:138–143.

    PubMed  CAS  Google Scholar 

  17. Ridley K, Olds TS, Hill A. The multimedia activity recall for children and adolescents (MARCA): development and evaluation. Int J Behav Nutr Phy 2006;3:10–21.

    Article  Google Scholar 

  18. Koo MM, Rohan TE. Comparison of four habitual physical activity questionnaires in girls aged 7–15 yr. Med Sci Sports Exerc 1999;31:421–427.

    Article  PubMed  CAS  Google Scholar 

  19. Aaron DJ, Kriska AM, Dearwater SR, Cauley JA, Metz KF, LaPorte RE. Reproducibility and validity of an epidemiologic questionnaire to assess past year physical activity in adolescents. Am J Epidemiol 1995;142:191–201.

    PubMed  CAS  Google Scholar 

  20. Treuth MS, Hou N, Young DR, Maynard LM. Validity and reliability of the Fels physical activity questionnaire for children. Med Sci Sports Exerc 2005;37:488–495.

    Article  PubMed  Google Scholar 

  21. Sallis JF. Self-report measures of children’s physical activity. J School Health 1991;61:215–219.

    Article  PubMed  CAS  Google Scholar 

  22. Chinapaw MJM, Mokkink LB, van Poppel MNM, van Mechelen W, Terwee CB. Physical activity questionnaires for youth: a systematic review of measurement properties. Sports Med 2010;40:539–563.

    Article  PubMed  Google Scholar 

  23. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003;35:1381–1395.

    Article  PubMed  Google Scholar 

  24. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Theriault G. A method to assess energy expenditure in children and adults. Am J Clin Nutr 1983;37:461–467.

    PubMed  CAS  Google Scholar 

  25. Rangul V, Holmen TL, Kurtze N, Cuypers K, Midthjell K. Reliability and validity of two frequently used self-administered physical activity questionnaires in adolescents. BMC Med Res Methodol 2008;8:47–57.

    Article  PubMed  Google Scholar 

  26. Mikaelsson K, Eliasson K, Lysholm J, Nyberg L, Michaelson P. Physical capacity in physically active and non-active adolescents. J Public Health 2011;19:131–138.

    Article  Google Scholar 

  27. Lachat CK, Verstraeten R, Khanh LNB, Hagstromer M, Khan NC, Van NDA, et al. Validity of two physical activity questionnaires (IPAQ and PAQA) for Vietnamese adolescents in rural and urban areas. Int J Behav Nutr Phy 2008;5:37–44.

    Article  Google Scholar 

  28. Guedes DP, Lopes CC, Guedes JERP. Reproducibility and validity of the International Physical Activity Questionnaire in adolescents. Braz J Sports Med 2005;11:151–158.

    Google Scholar 

  29. Hagstromer M, von Berlepsch J, Phillipp K, Ortega FB, Sjostrom M, Ruiz JR, et al. Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: the HELENA study. Int J Obes 2008;32(Suppl 5):S42–S48.

    Article  Google Scholar 

  30. Ottevaere C, Huybrechts I, De Meester F, De Bourdeaudhuij I, Cuenca-Garcia M, De Henauw S. The use of accelerometry in adolescents and its implementation with non-wear time activity diaries in free-living conditions. J Sports Sci 2011;29:103–113.

    Article  PubMed  Google Scholar 

  31. Martínez-Gomez D, Warnberg J, Welk GJ, Sjostrom M, Veiga OL, Marcos A. Validity of the Bouchard activity diary in Spanish adolescents. Public Health Nutr 2010;13:261–268.

    Article  PubMed  Google Scholar 

  32. Hofferth SL, Welk GJ, Treuth MS, Randolph SM, Curtin SC, Valliant R. Validation of a diary measure of children’s physical activities. Sociol Methodol 2008;38:133–154.

    Google Scholar 

  33. Goulart EA, Maria P, De Bem FL, Pires MC, Barros MVG, Duatce MdFdS, et al. Reproducibility and validity of the 3 Day Physical Activity Questionnaire in a sample of Brazilian adolescents. Med Sci Sports Exerc 2001;33(Suppl 5):S144.

    Article  Google Scholar 

  34. Pate RR, Ross R, Dowda M, Trost SG, Sirard JR. Validation of a 3-day physical activity recall instrument in female youth. Pediat Exerc Sci 2003;15:257–265.

    Google Scholar 

  35. McMurray RG, Ring KB, Treuth MS, Welk GJ, Pate RR, Schmitz KH, et al. Comparison of two approaches to structured physical activity surveys for adolescents. Med Sci Sports Exerc 2004;36:2135–2143.

    Article  PubMed  Google Scholar 

  36. Lee KS, Trost SG. Validity and reliability of the 3-day physical activity recall in Singaporean adolescents. Res Q Exerc Sport 2005;76:101–106.

    Article  PubMed  Google Scholar 

  37. Schofield G, Schofield L, Mummery K. Adolescent active transportation: a major role in physical activity. Youth Stud Aust 2005;24:43–47.

    Google Scholar 

  38. Schofield L, Mummery K, Schofield G, Walmsely H. Adolescent girls and inactivity: insights from the Central Queensland adolescent physical activity and nutrition study. ACHPER Aust Healthy Lifestyles J 2002;49:17–22.

    Google Scholar 

  39. Pate RR, Trost SG, Dowda M, Ott AE, Ward DS, Saunders R, et al. Tracking of physical activity, physical inactivity, and health-related physical fitness in rural youth. Pediat Exerc Sci 1999;11:364–376.

    Google Scholar 

  40. Pate RR, Trost SG, Felton GM, Ward DS, Dowda M, Saunders R. Correlates of physical activity behavior in rural youth. Res Q Exerc Sport 1997;68:241–248.

    PubMed  CAS  Google Scholar 

  41. McMurray RG, Ward DS, Elder JP, Lytle LA, Strikmiller PK, Baggett CD, et al. Do overweight girls overreport physical activity? Am J Health Behav 2008;32:538–546.

    Article  PubMed  Google Scholar 

  42. Hurter Z, Pienaar AE. Physical activity levels and patterns of thirteen to fifteen year old boys from the North West Province: Thusa Bana study. S Afr J Res Sport Phy Edu Recr 2007;29:41–57.

    Google Scholar 

  43. Engelbrecht C, Pienaar AE, Coetzee B. The relationship between physical activity levels and physical fitness of 13–15 year old girls in the North-West Province of South Africa. J Hum Movement Stud 2002;43:87–106.

    Google Scholar 

  44. Trost SG, Ward DS, McGraw B, Pate RR. Validity of the Previous Day Physical Activity Recall (PDPAR) in the fifth-grade children. Pediat Exerc Sci 1999;11:341–348.

    Google Scholar 

  45. Welk GJ, Dzewaltowski DA, Hill JL. Comparison of the computerized ACTIVITYGRAM instrument and the Previous Day Physical Activity Recall for assessing physical activity in children. Res Q Exerc Sport 2004;75:370–380.

    PubMed  Google Scholar 

  46. Anderson CB, Hagstromer M, Yngve A. Validation of the PDPAR as an adolescent diary: effect of accelerometer cut points. Med Sci Sports Exerc 2005;37:1224–1230.

    Article  PubMed  Google Scholar 

  47. Pate RR, Saunders RP, Ward DS, Felton G, Trost SG, Dowda M. Evaluation of a community-based intervention to promote physical activity in youth: lessons from Active Winners. Am J Health Promot 2003;17:171–182.

    Article  PubMed  Google Scholar 

  48. Pate RR, Ward DS, Saunders RP, Felton G, Dishman RK, Dowda M. Promotion of physical activity among high-school girls: a randomized controlled trial. Am J Public Health 2005;95:1582–1587.

    Article  PubMed  Google Scholar 

  49. Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med 2007;44:143–147.

    Article  PubMed  Google Scholar 

  50. Going SB, Levin S, Stewart D, Kushi L, Cornell CE, Hunsberger S, et al. Physical activity assessment in American Indian schoolchildren in the Pathways study. Am J Clin Nutr 1999;69(Suppl):S788–S795.

    Google Scholar 

  51. Trost SG, Pate RR, Freedson PS, Sallis JF, Wendell TC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc 2000;32:426–431.

    Article  PubMed  CAS  Google Scholar 

  52. Cuddihy TF, Pangrazi RP, Tomson LM. Pedometers: answers to FAQs from teachers. J Phys Educ Recreat Dance 2005;76:36.

    Google Scholar 

  53. Chen KY, Bassett DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 2005;37(Suppl):S490–S500.

    Article  PubMed  Google Scholar 

  54. Tudor-Locke C, McClain JJ. Objective monitoring of physical activity in children: considerations for instrument selection. J Sci Med Sport 2009;12:526–533.

    Article  PubMed  Google Scholar 

  55. Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc 2005;37(Suppl 11):S523–S530.

    Article  PubMed  Google Scholar 

  56. Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obesity 2002;10:150–157.

    Article  Google Scholar 

  57. Ekelund U, Anderssen S, Froberg K, Sardinha L, Andersen L, Brage S. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study. Diabetologia 2007;50:1832–1840.

    Article  PubMed  CAS  Google Scholar 

  58. Sun DX, Schmidt G, Teo-Koh SM. Validation of the RT3 accelerometer for measuring physical activity of children in simulated free-living conditions. Pediat Exerc Sci 2008;20:181–197.

    Google Scholar 

  59. Puyau MR, Adolph AL, Vohra FA, Zakeri I, Butte NF. Prediction of activity energy expenditure using accelerometers in children. Med Sci Sports Exerc 2004;36:1625.

    PubMed  Google Scholar 

  60. Marshall AL, Rachele JN, Marshall L-AJ, Lai J, Jones LV. Sit versus stand: can sitting be accurately identified using MTI accelerometer data? Med Sci Sports Exerc 2010;42:475.

    Google Scholar 

  61. Kim Y, Beets MW, Welk GJ. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but...: a systematic review. J Sci Med Sport. In press 2012.

  62. Mota J, Valente M, Aires L, Silva P, Paula Santos M, Ribeiro JC. Accelerometer cut-points and youth physical activity prevalence. Eur Phys Educ Rev 2007;13:287–299.

    Article  Google Scholar 

  63. Bassett J, Strath SJ. Use of pedometers to assess physical activity. In: Welk G, eds. Physical activity assessment for health-related research. Champaign: Human Kinetics, 2002: 163–178.

    Google Scholar 

  64. Schneider PL, Crouter SE, Lukajic O, Bassett DR. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med Sci Sports Exerc 2003;35:1779–1784.

    Article  PubMed  Google Scholar 

  65. Kilanowski CK, Consalvi AR, Epstein LH. Validation of an electronic pedometer for measurement of physical activity in children. Pediat Exerc Sci 1999;11:63–68.

    Google Scholar 

  66. Ramirez-Marrero F, Smith B, Sherman W, Kirby T. Comparison of methods to estimate physical activity and energy expenditure in African American children. Int J Sports Med 2005;26:363–371.

    Article  PubMed  CAS  Google Scholar 

  67. Duncan JS, Schofield G, Duncan EK, Hinckson EA. Effects of age, walking speed, and body composition on pedometer accuracy in children. Res Q Exerc Sport 2007;78:420–428.

    Article  PubMed  Google Scholar 

  68. LaPorte RE, Montoye HJ, Caspersen C. Assessment of physical activity in epidemiologic research: problems and prospects. Public Health Rep 1985;100:131.

    PubMed  CAS  Google Scholar 

  69. Sirard JR, Pate RR. Physical activity assessment in children and adolescents. Sports Med 2001;31:439–454.

    Article  PubMed  CAS  Google Scholar 

  70. Trost SG, Pate RR, McIver KL. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 2005;37(Suppl):S531–S543.

    Article  PubMed  Google Scholar 

  71. Nichols R, Davis KL, McCord T, Schmidt D, Slezak AM. The use of heart rate monitors in physical education. Strategies 2009;22:19–23.

    Google Scholar 

  72. Livingstone M, Coward W, Prentice A, Davies P, Strain J, McKenna P, et al. Daily energy expenditure in free-living children: comparison of heart-rate monitoring with the doubly labeled water (2H218O) method. Am J Clin Nutr 1992;56:343–352.

    PubMed  CAS  Google Scholar 

  73. Eston RG, Rowlands AV, Ingledew DK. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J App Physiol 1998;84:362–371.

    CAS  Google Scholar 

  74. Reis VM, van den Tillaar R, Marques MC. Higher precision of heart rate compared with VO2 to predict exercise intensity in endurance-trained runners. J Sports Sci Med 2011;10:164–168.

    Google Scholar 

  75. McGrath L, Hinckson E. Physical activity in children: capturing habitual intermittent activity accurately. J Sci Med Sport 2009;12:75.

    Article  Google Scholar 

  76. Treuth MS, Adolph AL, Butte NF. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry. Am J Physiol 1998;275:12–18.

    Google Scholar 

  77. McKenzie TL, Marshall SJ, Sallis JF, Conway TL. Leisure-time physical activity in school environments: an observational study using SOPLAY. Prev Med 2000;30:70–77.

    Article  PubMed  CAS  Google Scholar 

  78. Belton S, Donncha CM. Reliability and validity of a new physical activity self-report measure for younger children. Meas Phys Educ Exerc Sci 2010;14:15–28.

    Article  Google Scholar 

  79. Fairclough S, Stratton G. Effects of a physical education intervention to improve student activity levels. Phys Educ Sport Pedagog 2006;11:29–44.

    Article  Google Scholar 

  80. Sallis JF, McKenzie TL, Conway TL, Elder JP, Prochaska JJ, Brown M, et al. Environmental interventions for eating and physical activity: a randomized controlled trial in middle schools. Am J Prev Med 2003;24:209–217.

    Article  PubMed  Google Scholar 

  81. Sleap M. Physical activity levels of 5–11-year-old children in England: cumulative evidence from three direct observation studies. Int J Sports Med 1996;17:248–253.

    Article  PubMed  CAS  Google Scholar 

  82. Anderssen N, Jacobs DR, Aas H, Jakobsen R. Do adolescents and parents report each other’s physical activity accurately? Scand J Med Sci Sports 1995;5:302–307.

    Article  PubMed  CAS  Google Scholar 

  83. McKenzie TL. Observational measures of childrens’ physical activity. J Sch Health 1991;61:224–227.

    Article  PubMed  CAS  Google Scholar 

  84. McKenzie TL. Use of direct observation to assess physical activity. In: Welk GJ, eds. Physical activity assessments for health-related research. Champaign: Human Kinetics, 2002: 179–195.

    Google Scholar 

  85. Haerens L, De Bourdeaudhuij I, Maes L, Cardon G, Deforche B. School-based randomized controlled trial of a physical activity intervention among adolescents. J Adolesc Health 2007;40:258–265.

    Article  PubMed  Google Scholar 

  86. Calabro MA, Welk GJ, Eisenmann JC. Validation of the SenseWear Pro armband algorithms in children. Med Sci Sports Exerc 2009;41:1714–1720.

    Article  PubMed  Google Scholar 

  87. Arvidsson D, Slinde F, Hulthen L. Free-living energy expenditure in children using multi-sensor activity monitors. Clin Nutr 2009;28:305–312.

    Article  PubMed  Google Scholar 

  88. Naditz A. Gruve tri-axial accelerometer. Telemed e-Health 2009;15:399.

    Google Scholar 

  89. Manohar CU, Koepp G, Mc Crady-Spitzer S, Levine J. Validation of the Gruve triaxial accelerometer system for measuring physical activity. Obesity 2010;18(Suppl):S133.

    Google Scholar 

  90. Bonomi AG, Plasqui G, Goris AHC, Westerterp KR. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J App Physiol 2009;107:655–661.

    Article  CAS  Google Scholar 

  91. Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 2007;15:2371–2379.

    Article  PubMed  Google Scholar 

  92. Bonomi AG, Plasqui G, Goris AHC, Westerterp KR. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity 2010;18:1845–1851.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome N. Rachele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rachele, J.N., McPhail, S.M., Washington, T.L. et al. Practical physical activity measurement in youth: a review of contemporary approaches. World J Pediatr 8, 207–216 (2012). https://doi.org/10.1007/s12519-012-0359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-012-0359-z

Key words

Navigation